Reaction path analysis of benzene hydrogenation on Pt based on ab initio calculations

M. Saeys, G.B. Marin

Laboratory for Petrochemical Engineering, Ghent University

Eurokin - Louvain-La-Neuve Meeting, February 18/19

Introduction

Motivation of study

- Hydrogenation/dehydrogenation cyclic C₆
- Industrially important
 - naphtha reforming/petroleum refining
 - hydrocracking
- Pt: very effective (de)hydrogenation catalyst
- Model reaction
- Experimental studies
 - kinetic and spectroscopic
- Goals
 - kinetic model (qualitative)
 - kinetic parameters (quantitative)

Introduction

- Aromatics Removal in Hydrocracking
 - Environmental reasons: some carcinogenic
 - Quality reasons: cetane index

- Density Functional Theory
 - Schrödinger Equation
 - Hohenberg-Kohn: $E=f[\rho(r),V(r)]$
 - Central variable: 3D electron-density
 - Kohn-Sham: basis set
 - Form of functional:
 - LDA, GGA, meta-GGA, hybrid

Method

• Cluster method

Method

• Computational Methodology:

- DFT with Becke Perdew86 functional (GGA)
- Double zeta basis set with relativistic frozen core potentials for Pt (4f) and C (1s)
 - tests with larger basis set, smaller frozen core
- Relativistic approximation: ZORA
- Unrestricted, spin optimized
- Amsterdam Density Functional program package
- Fixed Pt (14,8) cluster
 - tests with larger clusters, periodic calculations
 - tests with partially optimized clusters

Calculation vs. Experiment

 Adsorption of stable molecules
 Benzene, hydrogen, cyclohexadiene, cyclohexene and cyclohexane

- Gas phase thermochemistry

• Reaction mechanism:

B + *		B*
H ₂ + 2 *	$ \rightarrow $	2 H*
B* + H*	\rightarrow	HB* + *
HB* + H*	\rightarrow	$H_2B^* + *$
$H_2B^* + H^*$		$H_3B^* + *$
$H_3B^* + H^*$	\rightarrow	$H_4B^* + *$
$H_4B^* + 2H^*$	\rightarrow	CHex + 3*
B* + *	\rightarrow	$C6H5* + H^{2}$
C6H5*+*	\rightarrow	$C6H4* + H^{2}$

• Pt(111)-adsorption sites:

- Bridge —
- Hollow hcp —
- Hollow fcc —
- Atop —

- **Experimental data**
- STM: at 298K: Hollow/bridge=2/3 - at 4K: bridge

TPD: Adsorption enthalpy: 117 kJ/mol and 82 kJ/mol

- HREELS, RAIRS:
 - 3 peaks: 820, 830 and 900 cm⁻¹
 - Coverage dependence

Bridge site: 102 kJ/mol

Hollow hcp: 71 kJ/mol

Hollow fcc: 68 kJ/mol

Bridge site II: 66 kJ/mol

Hollow hcp II: 51 kJ/mol

Atop: 0 kJ/mol

Bridge: 102 kJ/mol

Hollow: 71 kJ/mol

Expt: 117 kJ/mol and 82 kJ/mol

 Calculated/experimental vibrational spectrum Bridge adsorbed C₆H₆ and C₆D₆

 Calculated/experimental vibrational spectrum Hollow adsorbed C₆H₆ and C₆D₆

Coverage dependence of vibrational spectrum

Bridge 796 cm⁻¹ 831 cm⁻¹/928 cm⁻¹ 1415 cm⁻¹

> Hollow 796 cm⁻¹

Summary

- Two important adsorption sites: bridge and hollow
- Bridge:
 - favoured site at low coverage
 - low mobility
- Hollow:
 - less stable at low coverage, more important at high coverage
 - high mobility
- Hollow hcp=Hollow fcc
- Vibrational spectra: explained

H₂ Adsorption

• Data

- Many experimental and theoretical studies
- Experimental adsorption enthalpy: coverage dependent
- Low coverage: $\Delta H_{ads} = 90 \text{ kJ/mol}$

H₂ Adsorption

Calculated results

Hollow fcc: 86 kJ/mol

Top: 94 kJ/mol

- Summary
- Good agreement with experiment
- Top slightly more stable than hollow site
- H is very mobile

Adsorption

Calculated vs. experimental results

1,4-Cyclohexadiene: $\Delta H_{ads,calc}$: 146 kJ/mol $\Delta H_{ads,exp} \approx 143$ kJ/mol

1,3-Cyclohexadiene: $\Delta H_{ads,calc}$: 143 kJ/mol $\Delta H_{ads,exp} \approx 143$ kJ/mol

Adsorption

Calculated vs. experimental results

Cyclohexene:

 $\Delta H_{ads,calc}$: 68 kJ/mol $\Delta H_{ads,exp} = 62-72$ kJ/mol

Cyclohexane: $\Delta H_{ads,calc}$: 28 kJ/mol $\Delta H_{ads,exp}$ = 58 kJ/mol

• Gas phase reaction enthalpy (kJ/mol): (de)hydrogenation of benzene:

Product	ΔH _r ° (298K)	ΔH _r ° (298K)	Error
	Calc	Exp	
Benzyne	+380	+379	+1
1,4-cyclohexadiene	+37	+29	+8
Cyclohexene	-71	-86	+15
Cyclohexane	-187	-207	+20

•Approach:

Start from experimental gas phase enthalpies and combine with calculated adsorption enthalpies
TS: use average

Reaction Mechanism

• Horiuti-Polanyi:

B + *	$\overrightarrow{\leftarrow}$	B*
H ₂ + 2 *	$ \rightarrow $	2 H*
$B^* + H^*$	$ \longrightarrow $	HB* + *
$HB^* + H^*$		$H_2B^* + *$
$H_2B^* + H^*$	$\stackrel{\longrightarrow}{\longleftarrow}$	$H_3B^* + *$
$H_3B^* + H^*$	\rightarrow	$H_4B^* + *$
$H_4B^* + 2H^*$	\rightarrow	CHex $+ 3^*$
B* + *	\leftarrow	$C6H5* + H^{*}$
C6H5*+*	\rightarrow	$C6H4* + H^{*}$

Reaction Mechanism

• More Detailed:

- Is there a dominant Reaction Path?
- Is there a RDS?
- Is dehydrogenation of benzene important?

Reaction path analysis

Reaction mechanism: Approach

1. Start from reactant: calculate all \overline{E}_a 's

2. Only consider kinetically favoured route for next step

• Reaction mechanism:

B + *	$\overrightarrow{\leftarrow}$	B*
H ₂ + 2 *		2 H*
B* + H*		HB* + *
HB* + H*		$H_2B^* + *$
$H_2B^* + H^*$	\rightarrow	$H_3B^* + *$
$H_3B^* + H^*$	\rightarrow	$H_4B^* + *$
$H_4B^* + 2H^*$	\rightarrow	CHex + 3*
B* + *	\rightarrow	C6H5* + H*
C6H5*+*	\rightarrow	C6H4* + H*

• Reaction mechanism:

$E_a = 120 \text{ kJ/mol}; \Delta H_r = +42 \text{ kJ/mol}$

"Slip"

"3-Centered" L

 $E_a=100 \text{ kJ/mol}$ $\Delta H_r=+71 \text{ kJ/mol}$

$E_a = 26 \text{ kJ/mol}$ $\Delta H_r = -20 \text{ kJ/mol}$

 $E_a = 89 \text{ kJ/mol}$ $\Delta H_r = +11 \text{ kJ/mol}$

 $E_a = 120 \text{ kJ/mol}$ $\Delta H_r = +42 \text{ kJ/mol}$

Summary

- Three possible reaction paths
- Two types of reaction mechanisms: Slip and 3-centered
- Benzene adsorbed at hollow site is reactive species
- Benzene adsorbed at bridge site is too strongly adsorbed
- cfr. Ethylene hydrogenation

• Reaction mechanism:

B + *	\leftarrow	B*
H ₂ + 2 *		2 H*
B* + H*	\rightarrow	HB* + *
HB* + H*		$H_2B^* + *$
$H_2B^* + H^*$		$H_3B^* + *$
$H_3B^* + H^*$		$H_4B^* + *$
$H_4B^* + 2H^*$	\rightarrow	CHex $+ 3^*$
B* + *	\rightarrow	$C6H5* + H^{3}$
C6H5*+*	\rightarrow	$C6H4* + H^{3}$

Addition of the second H

• Reaction mechanism:

Addition of the second H

• Reaction paths:

1 and $5 \rightarrow 1,3$ -CHD

2 and 4 \rightarrow 1,3-dihydroB

$$3 \rightarrow 1,4$$
-CHD

Addition of the second H

5 different reaction paths

 $\Delta H_r = +106 \text{ kJ/mol}$

1,3-CHD

 $\Delta H_r = +39 \text{ kJ/mol}$

 $\Delta H_r = +36 \text{ kJ/mol}$

 $\Delta H_r = +26 \text{ kJ/mol}$

 $\Delta H_r = +35 \text{ kJ/mol}$

1,2-dihydroB

1,3-CHD

1,4-CHD

1,2-dihydroB

• Reaction mechanism:

<u>Summary</u>

Discussion:

Addition of first and second H
have identical E_a
1,3-dihydrobenzene is the
intermediate

Dehydrogenation of 1,3-CHD faster than 1,4-CHD
Experimental E_a dehydro 1,3-CHD: 57-63 kJ/mol
Intermediate in TPR 1,3-CHD
No intermediate in TPR 1,4-CHD

Addition of Third and Fourth H

• Reaction mechanism:

B + *	\leftarrow	B*
H ₂ + 2 *	\leftarrow	2 H*
B* + H*	\rightarrow	HB* + *
HB* + H*		$H_2B^* + *$
$H_2B^* + H^*$		$H_3B^* + *$
$H_3B^* + H^*$		$H_4B^* + *$
$H_4B^* + 2H^*$	\rightarrow	CHex $+ 3^*$
B* + *	$ \longrightarrow $	C6H5* + H*
C6H5*+*	\rightarrow	C6H4* + H*

Addition of Third and Fourth H

• Reaction mechanism:

• Reaction paths:

1: E_a = 158 kJ/mol, ΔH_r = +22 kJ/mol

2: $E_a = 135 \text{ kJ/mol}$

3: $E_a = 89 \text{ kJ/mol}$, $\Delta H_r = +33 \text{ kJ/mol}$

Addition of Fourth H

• Reaction path:

1: E_a = 118 kJ/mol, ΔH_r =+ 30 kJ/mol

Reaction Path

• Reaction mechanism:

Reaction Path

Energy Profile:

Reaction Path

Energy Profile:

Dehydrogenation

- Is there a C_6H_5 or C_6H_4 -species thermodynamically favoured?
 - Some kinetic studies indicate a dehydrogenated species to be the Most Abundant Surface Intermediate (MASI)
 - Benzene dehydrogenates in TPD

Dehydrogenation

$\Delta H_r = +76-100 \text{ kJ/mol}$

Dehydrogenation

 $\Delta H_r = +13-63 \text{ kJ/mol}$

 $\Delta H_r = +20-70 \text{ kJ/mol}$

m- and p-benzyne were found to be >160 kJ/mol less stable than o-benzyne

• Summary

- Due to the high endothermicity of the dehydrogenation, C_6H_5 and C_6H_4 are not expected to be formed much under hydrogenation conditions
- MASI might be non-reactive benzene adsorbed on the bridge site

Kinetic Modelling using ab initio reaction path analysis

- Hydrogenation of Toluene on Pt/ZSM-22: experimental
- Model Assumptions:
 - LHHW model
 - Competitive H₂ and toluene chemisorption
 - Reactant adsorption quasi-equilibrated
 - 5th & 6th H addition are quasi-equilibrated
 - Product desorption fast and irreversible
 - No dehydrogenation
 - 4th H addition RDS

Kinetic Modelling using ab initio reaction path analysis

Contractine Stricts.4 H RDSF-value104 $E_{a,surf}^{Comp}$ (kJ/mol)-59±7 ΔH_{ads} (H₂) (kJ/mol)-42±12 ΔH_{ads} (Arom)(kJ/mol)-70±2 $E_{a,surf}^{comp} = E_{a,4} + \Delta H_{arom} + 2\Delta H_{H_2} + \Delta H_1 + \Delta H_2 + \Delta H_3$

$$E_{a,surf}^{Comp}(calc) = 100 - 71 - 2 \times 42 - 7.5 = -62.5$$

General results:

- Bridge site: most stable, unreactive
- Hollow site: reactive species

• H addition

- One dominant reaction path: H addition in meta position
- Addition of 4th H atom requires the highest activation energy
- $E_{a,1,2,3} = 64 \text{ kJ/mol}, E_{a,4} = 100 \text{ kJ/mol}$
- Good agreement with experiment

Dehydrogenation

- Thermodynamically not favoured

- Joris Thybaut
- Matthew Neurock
- Marie-Françoise Reyniers
- IUAP-program
- Fund for Scientific Research Flanders