The Importance of Physisorption in Chemical Kinetics : Zeolite Catalyzed Reactions

Joeri Denayer – Gino Baron

Dienst Chemische Ingenieurstechniek, VUB

5.00 Angstroms

Zeolite Catalysis: Diffusion, Adsorption, Reaction

Interference of several adsorption and reaction phenomena

Adsorption effects Zeolite: Si/AI, pore diameter, topology, polarity

Adsorbate: molecular weight, shape, polarity

Catalytic effects

Zeolite: Si/Al, acidity, structure

Reactant: molecular weight, shape

Modeling:

K', q_{sat} ΔH_0 , ΔS_0 , Interactionparameters Exact adsorption and reaction parameters

nsight in shape selective and catalytic effects

k_{isom}, k_A, k_{B1}, ... E_{act}

Overview

Adsorption

- Low zeolite coverage
- Intermediate coverage
- Complete coverage

Reaction

- Hydrocracking of alkanes on Y zeolites
 - Vapor phase
 - Liquid phase

Adsorption

- Chromatographic techniques
- C5 C12 linear and branched alkanes, alkenes, ...
- 20 400 °C
- Gas, vapor and liquid phase
- Series of zeolites

 \Rightarrow rational relationships between system parameters and adsorption properties ???

Gas and liquid chromatography

MOBILE PHASE

- inert gas
- inert gas + component
- mixture
- liquid

DETECTOR: TCD, MS, Refractometer

Methods of moments: adsorption constants

$$v_f p \frac{\partial x_i}{\partial z} + \left(\varepsilon_{ext} + \varepsilon_{macr}\right) p \frac{\partial x_i}{\partial t} + \left(1 - \varepsilon_{ext} - \varepsilon_{macr}\right) \left(\frac{\partial q_i}{\partial t}\right) = 0 \qquad i = 1...3 \qquad \varphi_i = \frac{K'_i p x_i}{1 + L_1 p x_1 + L_2 p x_2}$$

component 1 in inert carrier

$$\mu = \frac{L}{v_f} \Big[(\varepsilon_{ext} + \varepsilon_{macr}) + (1 - \varepsilon_{ext} - \varepsilon_{macr}) (K'_1 \rho_{crys} RT) \Big]$$

• component 2 in adsorbing carrier 2

$$\mu_{2} = \frac{L}{v_{f}} \left[\left(\varepsilon_{ext} + \varepsilon_{macr} \right) + \left(1 - \varepsilon_{ext} - \varepsilon_{macr} \right) \left(\frac{K'_{2} \rho_{crys} RT}{\left(1 + L_{2} p x_{2} \right)^{2}} \right) \right]$$

• component 1 in adsorbing carrier 2

$$\mu_{1} = \frac{L}{v_{f}} \left[\left(\varepsilon_{ext} + \varepsilon_{macr} \right) + \left(1 - \varepsilon_{ext} - \varepsilon_{macr} \right) \left(\frac{K_{1} \rho_{crys} RT}{1 + L_{2} p x_{2}} \right) \right]$$

Mass transfer

Method of moments

$$\frac{\sigma^2}{2\mu^2} = \frac{L}{v_f} \frac{(1 - \varepsilon_{ext} - \varepsilon_{macr})(RT\rho_c K_i')}{\mu^2} \left(\frac{r_c^2}{15D_{micr}} + \frac{R_p^2 \left(1 + (RT\rho_c K_i')\left(\frac{1 - \varepsilon_p}{\varepsilon_p}\right)\right)}{15D_{macr}}\right) + \frac{D_{ax}\varepsilon_{ext}}{v_f L}$$

Fitting of breakthrough curves or pulse responses

$$-D_{ax}p\frac{\partial^2 x_i}{\partial z^2}v_fp\frac{\partial x_i}{\partial z} + (\varepsilon_{ext} + \varepsilon_{macr})p\frac{\partial x_i}{\partial t} + (1 - \varepsilon_{ext} - \varepsilon_{macr})\left(\frac{\partial q_i}{\partial t}\right) = 0$$

$$\frac{\partial q}{\partial t} = \frac{1}{R^2} \frac{\partial}{\partial R} \left(D_c R^2 \frac{\partial q}{\partial R} \right) \qquad \bar{q} = \frac{3}{R_c^3} \int_0^R q R^2 dR$$

Chromatography: merits

- Rapid measurement
- Broad range of components
- Broad range of operating conditions
- Simultaneous determination adsorption & diffusion

Adsorption at low coverage

No interactions between adsorbed molecules

Gas phase diffusion

Macropore diffusion model:

$$D_{macr} \cong \frac{D_{mol} \cdot \varepsilon}{\tau}$$

$$\Rightarrow D_{macr} = D_{mol}/10$$

sorbate	D _{mol}	D _{macr}		
	(m²/s)	(m²/s)		
n-hexane	5.1 10 ⁻⁵	3.8 10 ⁻⁶		
n-heptane	4.7 10 ⁻⁵	4.8 10 ⁻⁶		
n-octane	4.4 10 ⁻⁵	4.8 10 ⁻⁶		
n-nonane	4.1 10 ⁻⁵	6.4 10 ⁻⁶		
n-decane	3.8 10 ⁻⁵	2.4 10 ⁻⁶		
n-undecane	3.6 10 ⁻⁵	4.8 10 ⁻⁶		
n-dodecane	3.4 10 ⁻⁵	6.2 10 ⁻⁶		

⇒ Mass transfer is dominated by macropore diffusion

Influence Si/AI - Y zeolites

⇒ Exponential factor B decreases with AI content

Influence pore diameter

Compensation – effect : influence pore size

⇒ Compensation betweenn adsorption entropy and enthalpy
 ⇒ All 12 MR and 10 MR zeolites same characteristic curve

Compensation – effect : influence molecule type

General correlation for the Henry constants

$$\ln \mathbf{K'} = \left(\frac{\alpha}{\mathbf{RT}} - \frac{\gamma}{\mathbf{R}}\right) \mathbf{CN} + \left[\ln\left(\frac{\mathbf{n_T}}{2\mathbf{p}^{\theta}}\right) + \frac{\beta}{\mathbf{RT}} - \frac{\delta}{\mathbf{R}}\right]$$

3D fitting of experimental data

Adsorption at intermediate coverage

interaction between adsorbed molecules ?

Breakthrough curves

$$-D_{ax}p\frac{\partial^{2}x_{i}}{\partial z^{2}}v_{f}p\frac{\partial x_{i}}{\partial z} + (\varepsilon_{ext} + \varepsilon_{macr})p\frac{\partial x_{i}}{\partial t} + (1 - \varepsilon_{ext} - \varepsilon_{macr})\left(\frac{\partial q_{i}}{\partial t}\right) = 0 \qquad \frac{\partial \overline{q}}{\partial t} = k(q^{*} - q) = hK(c - c^{*})$$

Isotherm fitting

• Langmuir:

$$q(p,T) = \frac{Kp}{1+Lp}$$

• Langmuir-Freundlich:

$$q(p,T) = \frac{Kp^B}{1 + Lp^B}$$

• Langmuir + Interaction:

$$q(p,T) = \frac{K p e^{w \frac{q}{q_s}}}{1 + L p e^{w \frac{q}{q_s}}}$$

Perturbation chromatography

Influence zeolite loading on competition

⇒ More than 1 molecule supercage: separation factor decreases strongly

Adsorption at complete pore filling

Zeolite Y (Si/Al 30), mobile phase octane

no pronounced difference between short and long alkanes

Influence fluidum density on competition

Liquid phase adsorption

Statistical isotherm

$$q_{1} = \frac{\overline{N_{1}}}{M} = \frac{K'_{1} p_{1} + \sum_{j} \sum_{i} \frac{\left[(K'_{1} p_{1})^{i} (K'_{2} p_{2})^{j} (1 - i\beta_{1} / v - j\beta_{2} / v)^{i + j} \right]}{(i - 1)! j!}}{1 + K'_{1} p_{1} + K'_{2} p_{2} + \sum_{j} \sum_{i} \frac{\left[(K'_{1} p_{1})^{i} (K'_{2} p_{2})^{j} (1 - i\beta_{1} / v - j\beta_{2} / v)^{i + j} \right]}{(i)! j!}}{(i)! j!}$$

- Consider each supercage as independent system
- β_I : volume component i
- v: volume supercage

Partition coefficient model

$$q_i = K_i c_i$$

 $K_i = \overline{q}_s V_m$

Decoupling adsorption and reaction properties

Rate equations

Adsorption Vapor phase

$$q_i(p,T) = \frac{K'_i p_j e^{w_i \frac{q_T}{\overline{q}_s}}}{1 + \sum_j L_j p_j e^{w_j \frac{q_T}{\overline{q}_s}}}$$

$$\Delta H_{0,i} = \alpha CN + \beta$$
 $-\Delta S_{0,local}^{\theta} = \gamma CN + \delta$

$$q_i = K_i c_i$$

 $K_i = \overline{q}_s V_m$

 $\ln \left(K_{i}' \right) = \frac{-\Delta H_{i}}{RT_{m}} + \left[\frac{\Delta S_{0, \text{local}, i}^{\theta}}{R} + \ln \left(\frac{n_{T}}{2p^{\theta}} \right) \right]$

Kinetics

. . .

$$r_{nC4} = 2f_3k_cq_{MB} + \left(f_{2,2}k_{B1} + \frac{1}{2}f_{2,4}k_{B_2} + 2f_{3,4}k_c\right)q_{DB} + f_{2,2,3}k_{B_1}q_{TB}$$

Competition effects in vapor phase

Lumped reaction model

* Froment, G.F., Catalysis Today, 1987, 1, 455

Adsorption & kinetic parameters

	K'	L	q _s	k _{intr} * K _{DH}
	(mol/kg/bar)	(1/bar)	(mol/kg)	(1/bar/s)
nC7	6.91	9.8	0.7	0.023
nC9	37.4	60.0	0.62	0.063
Ratio	5.4			2.74

Competition in vapor phase

Competition in liquid phase

Denayer et al, J.Catal, In press

Vapor versus Liquid

Pure components

$$\zeta = 4.3$$

Vapor, binary

$$\zeta = 8.4$$

Liquid, binary

Conversion of mixtures

Conversion of mixture very well predicted using single component kinetic parameters and multicomponent adsorption equilibria

Conversion of mixtures

Reaction scheme

n-octane conversion

	k _{270 °C} (1/s)		E _{act, global} (kJ/mol)		$\Delta \Delta H_{Prot} (kJ/mol)$
	Pt/CBV720	Pt/CBV760	Pt/CBV720	Pt/CBV760	
MB	3.89 10-1	5.50 10-2	33.9	38.3	4.4
DB	$2.20 \ 10^{-1}$	3.24 10 ⁻²	32.3	38.0	5.7
TB	5.19 10 ⁻²	7.35 10 ⁻³	29.6	35.5	5.8
А	$6.50 \ 10^1$	$9.21 \ 10^0$	27.5	30.9	3.4
B1	$1.50 \ 10^{-1}$	$2.15 \ 10^{-2}$	59.2	62.4	3.2
B2	3.51 10-1	5.10 10 ⁻²	52.2	56.8	4.6
С	2.10 10 ⁻³	2.83 10 ⁻⁴	71.9	75.7	3.8

Martens, G.G., Marin, G.B., Martens, J.A., Jacobs, P.A., Baron, G.V. 2000., J. Cat., 195, 253-267.

Influence chain length and Si/Al

- Reactivity ~ Chain length
- Strong influence of Si/AI on observed activity

Kinetic parameters

 \Rightarrow Relative reaction rates independent of Si/AI and acidity

Conclusions

Several experimental and theoretical techniques to determine adsorption parameters in catalytic conditions

 Integrated adsorption - reaction study:
 Deeper insight in relation : zeolite - reactivity - selectivity - adsorption shape selective properties

Development and screening new materials, better process control, straightforward modeling

Acknowledgements

FWO Vlaanderen (G.0127.99) IAP-PAI programme on Supramolecular Chemistry and Catalysis, sponsored by the Belgian government Prof. G. Marin, LPT, RUGent Prof J. Martens, COK, KULeuven