

POLITECNICO DI MILANO Dipartimento di Chimica Materiali e Ingegneria Chimica *"Giulio Natta"*

ADVANCED APPROACHES TO THE KINETIC STUDY OF CATALYTIC REACTIONS: a) Transient methods;

b) Structured lab-scale reactors.

EUROKIN Billingham – UK June 26th, 2003

Enrico Tronconi

Outline (1/2)

- 1. Transient Response Methods applied to the kinetic analysis of the DeNOx-SCR reaction
- Transient adsorption-desorption and reactivity study of the SCR reactants (NH₃, NO) over V/W/TiO₂ catalysts
- Kinetic modeling and comparison with steady-state data
- Role of WO₃, kinetic influence of H_2O
- Application to dynamic modeling of SCR reactors
- Extension of TRMs to the kinetic analysis of NOx storage in NOx traps (Pt/BaO/Al₂O₃ systems)

Outline (2/2)

- 2. Lab-scale structured reactors for kinetic measurements in catalytic combustion
- ✓ Design and operation of an **annular reactor** for the kinetic study of CH₄ catalytic combustion
 - Modeling
 - Minimizing the impact of transport limitations
 - Kinetic results over $Pd/\gamma Al_2O_3$
- ✓ Application of a metallic plate-type reactor to the kinetic study of CO catalytic oxidation
 - Use heat conduction to effectively remove the reaction heat
 - Experimental results over $Pd/\gamma Al_2O_3$ coated Al slabs
 - Kinetic analysis

Debated Issues in SCR-DeNOx Catalysis over $V_2O_5/WO_3/TiO_2$ Systems $4 \text{ NO} + 4 \text{ NH}_3 + O_2 \rightarrow 4 \text{ N}_2 + 6 \text{ H}_2\text{O}$

- ER vs. LH mechanism? Adsorption vs. active sites?
- Rate determining step? Steady-state rate expression:

$$r_{NO} = k_{NO} C_{NO} \frac{K_{NH3} C_{NH3}}{1 + K_{NH3} C_{NH3}}?$$

- Promoting role of WO₃?
- Inhibiting action of H_2O due to competitive adsorption with NH_3 ?

Transient Response Methods

- The reacting system is perturbed (e.g. by changes of the feed composition), and its transient response is recorded.
- The response (e.g. the outlet composition) reflects the characteristics of the elementary steps in the kinetic sequence of the reaction.
- The elementary steps do <u>not proceed at the same rate</u>.

SCR Transient Response Experiments Approach

- Transient adsorption-desorption study of the individual SCR reactants (NH₃, NO) over V/W/TiO₂
 - NH₃, NO adsorption onto model and commercial catalysts
 - NH₃ oxidation
- Transient reactivity study (NH₃ + NO)
 - stepwise and linear changes of NH_3 in NO continuous flow
 - stepwise and linear changes of NO in NH_3 continuous flow

Rigs for Transient Response Experiments at PoliMI

SCR Transient Response Experiments Experimental Details

- Catalysts :
 - model $[V_2O_5(1.47\%)/TiO_2 \text{ and } V_2O_5(1.47\%)/WO_3(9\%)/TiO_2]$
 - commercial $[V_2O_5(0.62\%)/WO_3(9\%)/TiO_2]$
- Reactor:
 - $W_{cat} = 0.12 0.16 \text{ g}; d_p = 100 \text{ micron};$
 - $d_t = 0.6 \text{ cm}; L_b = 1 \text{ cm}$
- Operating conditions:
 - $Q = 120 280 \text{ Ncm}^3/\text{min}$
 - GHSV = 45000 140000 h⁻¹
 - C ramp = 20 ppm/min

Transient Adsorption-desorption Study NH₃ Adsorption-desorption

EUROKIN 3, Billingham, June 2003

EUROKIN 3, Billingham, June 2003

Transient Adsorption-desorption Study NO Adsorption-desorption

- a) Step change of NO inlet concentration. Model ternary catalyst, T = 280 °C
- b) Linear change, commercial catalyst, T = 300 °C

Kinetic analysis of NH₃ Adsorption-desorption 1D Heterogeneous Isothermal PFR Model

• NH₃ mass balance, catalyst:

$$\frac{\partial \theta_{NHB}}{\partial t} = r_{ad} - r_{des} - r_{ox}$$

• NH₃ and N₂ mass balances, gas phase:

$$\frac{\partial C_{\text{NH3}}}{\partial t} = -v \cdot \frac{\partial C_{\text{NH3}}}{\partial z} - \Omega \cdot (r_{ad} - r_{des}) \qquad \qquad \frac{\partial C_{\text{N2}}}{\partial t} = -v \cdot \frac{\partial C_{\text{N2}}}{\partial z} + \Omega \cdot 0.5 \cdot r_{\text{ox}}$$

• Rate equations for NH₃ adsorption, desorption and oxidation:

$$r_{ads} = k_{ads} C_{NH_3} \left(1 - \theta_{NH_3} \right) \qquad r_{des} = k_{des}^{\circ} \exp \left[-\frac{E_{des}^{\circ}}{RT} \left(1 - \alpha \theta_{NH_3} \right) \right] \cdot \theta_{NH_3}$$

$$\mathbf{r}_{\text{ox}} = \mathbf{k}_{\text{ox}} \cdot \boldsymbol{\theta}_{\text{NHB}}$$

Kinetic analysis of NH₃ Adsorption-desorption Data Fit

Step change of the NH₃ inlet concentration in He + O₂. Model V₂O₅-WO₃/TiO₂ catalyst Kinetic parameters: k°_a=0.487 m³/mol s, k°_d=2.67 E+5 1/s, E°_d= 22.9 kcal/mol, α =0.405, Ω_{NH3} =270 mol/m³

Linear variation of the NH₃ inlet concentration in He + O₂. Commercial WO₃-V₂O₅/TiO₂ catalyst. Kinetic parameters: k°_a= 33.87 m³/mol s, k°_d=2.2 E+6 1/s, E°_d= 23.0 kcal/mol, α =0.256, Ω_{NH3} =270 mol/m³

*Kinetic analysis of NH*₃ *Adsorption-desorption NH*₃ *Oxidation*

Linear change of the NH_3 inlet concentration in He + O_2 . Commercial V_2O_5 - WO_3 /Ti O_2 catalyst

Kinetic parameters:

 $k^{\circ}_{ox} = 3.25 \times 10^{6} \text{ l/s},$ $E^{\circ}_{ox} = 28.8 \text{ kcal/mol}$

Transient NH₃ + NO Reactivity Study NH₃ variations in constant NO flow

Transient NH₃ + NO Reactivity Study NO variations in constant NH₃ flow

EUROKIN 3, Billingham, June 2003

Transient Kinetic Analysis Dual-site "NH₃ Reservoir" Kinetics

Transient Kinetic Analysis *NH*₃ *changes in continuous NO flow: Data*

Transient Kinetic Analysis NO changes in continuous NH₃ flow: Simulation

NO step change in He + O₂ (1% v/v) + NH₃ (700ppm) Model WO₃-V₂O₅/TiO₂ catalyst T=220°C, GHSV = 75000 h⁻¹ **NO linear variation**

in He + O₂ (2 % v/v) +NH₃ (840 ppm) Commercial WO₃-V₂O₅/TiO₂ catalyst T=300°C, GHSV = 140000 h⁻¹

EUROKIN 3, Billingham, June 2003

Transient Kinetic Analysis *Rate determining step at steady-state*

$$\begin{array}{ccc} & & & r_{NO} \\ NH_3 & & & NH_3 & & N_2 \\ & & & & r_{des} & & + NO \end{array}$$

Surface reaction = r.d.s. if: $\Phi = \frac{r_{ads}}{r_{NO}} >> 1$

Values of Φ (C _{NO} =500 ppm)	T = 300 °C	T = 340 °C	T = 380 °C	
C _{NH3} =500 ppm	37.3	17.0	8.23	
C _{NH3} =400 ppm	31.9	14.3	6.91	
C _{NH3} =300 ppm	25.9	11.5	5.50	20

Role of WO₃ *in NH₃ adsorption-desorption*

EUROKIN 3, Billingham, June 2003

Role of WO_3 in $NH_3 + NO$ reactivity

SCR Transient kinetic study: Conclusions

- NH_3 is strongly adsorbed onto $V_2O_5/WO_3/TiO_2$ catalysts, which work as "ammonia storage" systems
- NO is not appreciably adsorbed
- NH₃ adsorption-desorption rate was fitted by Temkin-type kinetics
- NO + NH₃ surface reaction rate was fitted according to dual-site "reservoir" kinetics
- The assumption of equilibrium NH₃ adsorption may be critical
- WO₃ does not affect NH₃ adsorption, but greatly promotes NO + NH₃ reactivity
- Inhibition by H_2O does not result from competitive adsorption with NH_3

Dynamic modeling of SCR-DeNOx monolith reactors

- Unsteady kinetics of DeNOx catalysis by Transient Response Methods (Lietti et al., AIChE J, 1996)
- Dynamic SCR monolith reactor model + validation (Tronconi et al., IEC Res., 1998)
- Inclusion of SO_2 oxidation (Tronconi et al., IEC Res., 1999)

Validation of the dynamic SCR monolith reactor model

• Experimental and simulated evolutions of the NO outlet concentration during SCR reactor start-up and shut-down, and following step variations of NO inlet concentration (Tronconi et al., Ind. Eng. Chem. Res, 1998)

Main literature references for transient SCR kinetics

L. Lietti, I. Nova, S. Camurri, E. Tronconi, P. Forzatti "Study of the Dynamics of the SCR - DeNOx Reaction by the Transient Response Method" AIChE J., <u>43</u>, 2559-2570 (1997).

E. Tronconi, A. Cavanna, P. Forzatti "Unsteady Analysis of NO Reduction over Selective Catalytic Reduction - De-NOx Monolith Catalysts" Ind. Eng. Chem. Res., 37, 2341-2349 (1998).

E. Tronconi, C. Orsenigo, A. Cavanna, P. Forzatti "Transient Kinetics of SO2 Oxidation over SCR-DeNOx Monolith Catalysts" Ind. Eng. Chem. Res., <u>38</u>, 2593-2598 (1999).

I. Nova, L. Lietti, E. Tronconi, P. Forzatti "Transient response method applied to the kinetic analysis of the DeNOx-SCR reaction" Chem. Eng. Sci., <u>56</u>, 1229-1237 (2001).

Applying TRMs to study the kinetics of NOx storage in NOx traps (Pt/BaO/Al₂O₃ systems)

Elementary Steps $O_2 + 2Pt \xrightarrow{1} 2Pt - O$ NO +Pt $\xrightarrow{3}$ Pt-NO $NO_2 + Pt \xrightarrow{5} Pt-NO_2$ Pt-NO+Pt-O $\xrightarrow{7}_{8}$ Pt-NO₂ + Pt NO₂+S $\xrightarrow{9}$ S-NO₂ S-NO₂ $\xrightarrow{11}$ S-O + NO $NO_2 + S-O \xrightarrow{13} S-NO_3$ $NO_2 + S-NO_3 \xrightarrow{15} Ba(NO_3)_2$ $2 \text{ S-O} \quad \stackrel{17}{\longleftarrow} 2 \text{ S} + \text{O}_2$ Pt-NO₂ + S-NO₃ $\stackrel{19}{\longleftarrow}$ Ba(NO₃)₂ + Pt

Detailed kinetic scheme proposed by Olsson et al.,

Reactions over Pt J. Phys. Chem. <u>105</u> (2001) 6895 – 6906

adapted and compared to our TRM data, covering a variety of combinations of:

Reactions over BaO
catalytic systems (binary, ternary)
feed compositions (NO, NO₂, O₂)
in order to test its physico-chemical consistency

Spillover EUROKIN 3, Billingham, June 2003

TRM - Experimental

Adsorption + TPD

- NO_x storage phase
- Temperature programmed desorption

Feed mixtures

- NO₂ (1000 ppm)
- NO₂ (1000 ppm) +O₂ (3%)
- NO (1000 ppm)
- NO (1000 ppm) +O₂ (3%)

Catalytic systems

- Pt/Ba/Al₂O₃
- Ba/Al₂O₃
- > Pt/Al_2O_3

EUROKIN 3, Billingham, June 2003

Simulation of the experimental micro- reactor

Simulation of the experimental microreactor with a plug – flow non stationary heterogeneous model

Bed density = 0.7 g/cc; Void fraction ~ 0.35

Flow ~ 200 Ncc/min; catalyst mass ~ 0.12 g

Space Velocity: ~10⁵ Ncc/g/h

- Pt load=1%; Ba load=16.7%
- Pt and Ba dispersions: fitted by non linear regression

Hypothesis

- Neither internal nor external diffusional resistances
- No axial dispersion

$$\begin{split} & \epsilon \frac{\partial C_{i}}{\partial t} = -\frac{\epsilon}{\tau} \frac{\partial C_{i}}{\partial \overline{x}} + \Omega_{Pt} \sum_{j=1}^{NR_{Pt}} \nu_{ij} r_{j} + \Omega_{Ba} \sum_{k=1}^{NR_{Ba}} \nu_{ik} r_{k} \\ & \frac{\partial \Theta_{i}}{\partial t} = \sum_{j=1}^{NR} \nu_{ij} r_{j} \\ & \theta_{i} = \text{Pt, Ba species} \end{split}$$

EUROKIN 3, Billingham, June 2003

Feed mixture:

System: Ba/Al_2O_3

EUROKIN 3, Billingham, June 2003

Transient kinetics of NOx storage: Conclusions

The kinetic model has been tested in a wide experimental range of:

Feed mixtures

catalytic systems

Its predictions are useful in identifying the roles of catalyst components and of reacting species:

Role of gas – phase species

> NO₂ is the key species for NOx storage

> O₂ has a role in the presence of Pt, feeding NO or NO₂, involving a dead time both for NO and NO₂

Role of surface species

Main Barium species: S-NO₂ (nitrites) and Ba(NO₃)₂ (nitrates)

▷ The storage involves a two – step disproportionation, with a nitrites to nitrates slow evolution for all the experiments where storage takes place (IR data seem to suggest a different kinetic of evolution of nitrites to nitrates)

> Pt sites oxidize NO \Leftrightarrow NO₂ 32

2. Lab-scale structured reactors for kinetic measurements in catalytic combustion

- 2.1 Structured Annular Reactor for investigation of High Temperature Kinetics of CH₄ Combustion over very active PdO-based Catalysts
 - Design of the annular reactor by mathematical modeling
 - Experimental performances of the annular reactor
 - Kinetics of CH₄ combustion over PdO/ZrO₂ (10% w/w of Pd) catalyst

Kinetic measurements in catalytic combustion

• Demanding task

- Wide temperature ranges are relevant to practical applications (e.g. 350-850°C for G.T.);
- Extremely fast reactions in the high-T range which are typically affected by diffusion limitation
- Onset of temperature gradients associated with highly exothermic combustion reactions (high fuel concentration)
- Industrial applications typically require structured monolith catalysts

Annular flow microreactor

- High GHSV with minimum pressure drop
- Partial conversion at high reaction rate (high T)
- Well defined geometry (and flow pattern) ⇒ assessment and control of diffusional effects
- Effective dissipation of the heat of reaction (radiation)
 - J. Mc Carty, Catal. Today, 1995 A. Beretta et al. , Appl. Catal. A:Gen., 1999

Annular microreactor: Modeling Assumptions

- Steady state
- Fully developed laminar flow
- 1D lumped description of the gas phase
- 2D description of the catalyst phase
- Isothermal conditions
- Negligible pressure drop
- Planar geometry of the catalyst layer $(r_i/\delta_w > 50)$
Governing equations

Gas phase mass balance of f-species

$$u\frac{\partial C_{f,g}}{\partial z} - \left[\left(D_{m,f} + D_{ea,f}\right)\frac{\partial^2 C_{f,g}}{\partial z^2}\right] = \frac{4}{d_h} \left[\frac{\left(r_i + \delta_w\right)}{r_0 + \left(r_i + \delta_w\right)}\right] K_{g,f}\left(C_{f,w} - C_{f,g}\right)$$

Catalyst phase mass balance of f-species

$$D_{e,f} \frac{\partial^2 C_{f,w}}{\partial n^2} + v_f R_{f,w} = 0$$

Boundary condition

$$u(C_{f,g} - C_{f,g}^{\circ}) = (D_{m,f} + D_{ea,f}) \frac{\partial C_{f,g}}{\partial z} \text{ inlet condition (at z=0)}$$

$$\frac{\partial C_{f,g}}{\partial z} = 0 \qquad \text{outlet condition (at z=L)}$$

$$D_{e,f} \frac{\partial C_{f,w}}{\partial n} = K_{g,f} (C_{f,g} - C_{f,w}) \qquad \text{at catalyst surface (n=\delta_w)}$$

$$\frac{\partial C_{f,w}}{\partial n} = 0 \qquad \text{at catalyst/}\alpha - A_2O_3 \text{ interface (n=0)}$$

EUROKIN 3, Billingham, June 2003

Reactor design

Design parameters:

Catalyst layer thickness (δ_w), annular chamber height (δ_a)

Catalyst and reactor efficiencies (design targets)

 $\eta_{\text{int}}^{av} = \int_{0}^{L} \frac{\int_{0}^{\delta_{w}} R_{w}(z, n) dn}{R_{w}(z, \delta_{w}) \delta_{w}} dz / L \quad \text{internal catalyst efficiency}$ $\eta_{elob} = K_{r}^{eff} / K_{r} \quad \text{global reactor efficiency}$

 K_r^{eff} has been calculated using the following simple model:

$$u \frac{dC_{f,g}}{dz} + \frac{\left(r_i + \delta_w\right)^2 - r_i^2}{r_0^2 - \left(r_i + \delta_w\right)^2} R_{f,w}^{eff} = 0 \qquad \text{Mass balance of f-species}$$
$$C_{f,g} = C_{f,g}^\circ \qquad \text{inlet condition}$$
$$\text{Kinetics} \qquad R_w = \left(\frac{K_r C_{CH_4,w}}{1 + K_{H_2O} C_{H_2O,w}}\right)$$

Overall effectiveness factor

39

Experimental

- Reactor geometry
 - Structured support: dense α -Al₂O₃ tube
 - $-r_{i}=3.25 \text{ mm}$ $r_{o}=3.5 \text{ mm}$ $L_{tot}=80 \text{ mm}$ $L_{catalyst}=10 \text{ mm}$
- Active catalyst layer

Precursor powders

- PdO/ZrO_2 (10% w/w of Pd) dry impregnation with $Pd(NO_3)_2$ solution

Washcoat deposition (critical step)

 Dipping the support in a slurry prepared by ball milling precursor powders in a HNO₃ aqueous solution

 δ_w =15 µm (6 mg) by SEM and weight measurements (T_c=800°C)

- Investigated ranges of operating variables
 - T=400-550°C; GHSV=10⁶ cm³/gh (@STP)
 - $CH_4=0.8-3.0\%$; $H_2O=0-3.5\%$; $CO_2=0-2.7\%$; $O_2=10-20\%$

Effect of carrier gas

- Negligible diffusional limitations
- Partial conversion has been obtained up to 550°C

Thermal behaviour-1

CH₄ combustion experiments

Effective dissipation of reaction heat results in an almost isothermal catalyst layer

Thermal behaviour-2

CO-H₂ combustion tests (CO=4%, H₂=4%)

Mechanisms of heat dispersion:

radiation at high T (more effective) convection at low T.

Effects of reactant concentrations

 0^{th} order in O_2 concentration (lean conditions)

Effects of product concentrations

Power law Kinetics: $r = k_r C_{CH4} C_{H2O}^{\beta} C_{CO2}^{\gamma}$

 $E_{act}=108 \text{ kJ/mol}; \beta=-0.32; \gamma=-0.25$ 45

Role of the support on H_2O and CO_2 inhibition

 PdO/Al_2O_3

 CO_2 inhibition was not observed up to 10% CO_2 over PdO/Al₂O₃

CH₄ combustion in annular reactor -Conclusions

- A specifically designed annular reactor has allowed to investigate the kinetics of CH₄ combustion over PdO/ZrO₂ (10% Pd w/w) in a 400-550 °C T-range with:
 - minimum impact of diffusional limitations ($\delta_w = 15 \mu m$)
 - nearly isothermal conditions (radiation)
- The results of the kinetic study indicated that under the investigated conditions both H_2O and CO_2 similarly inhibit the reaction rate up to 550° C.
- Indications on a primary role of the support on the extent of both such inhibition effects have been found

2. Lab-scale structured reactors for kinetic measurements in catalytic combustion

- 2.2 Metallic Structured Catalysts with High Thermal Conductivity for the kinetic investigation of strongly exothermic G/S reactions
 - Investigate experimentally the <u>thermal</u> behavior of structured metallic catalysts in the presence of a strongly exothermic G/S reaction (CO oxidation)
 - Demonstrate the influence of catalyst design parameters
 - support material and geometry
 - coating formulation
 - Develop an engineering analysis of the experimental results
 - kinetics
 - thermal resistances

Structured catalysts in non-adiabatic g/s reactors

- Potential advantages:
 - + reduced pressure drop
 - + easy scale-up
 - + **favourable heat transfer properties** due to heat conduction in the connected matrix

Preparation of structured test catalysts - 1

- Supports consisting of four slabs assembled to form 3 parallel rectangular channels
- Catalyst (L = 200 mm) loaded into a rectangular (50x30 mm) reactor tube in an oven with air recirculation
- Five 1/16" tubings glued on the slabs to act as thermowells
- Front view:

Preparation of structured test catalysts - 2

- Three samples with supports made of
 - Aluminium: $k_{sol} = 200 \text{ W/(m K)}, s = 0.5 \text{ mm}$ Sample A
 - AISI 304: $k_{sol} = 20 \text{ W/(m K)}, s = 0.5 \text{ mm}$ Sample B
 - AISI 304: $k_{sol} = 20 \text{ W/(m K)}, s = 0.2 \text{ mm}$ Sample C
- <u>Washcoated</u> by deposition of 3% Pd/γ-Al₂O₃ (19% w/w) dissolved in sodium silicate
- Sample D (Al, s=0.5 mm) precoated with a pseudobohemite primer, dipped into a 3% Pd/ γ -Al₂O₃ silicafree slurry and flash-dried at 280 °C 51

CO oxidation runs: Kinetic study

% CO Conversion

• Investigated ranges, Sample A: .

 $Y^{\circ}_{CO} = 0.02 - 0.09$ $Y^{\circ}_{O2} = 0.05 - 0.20$ $T = 150 - 250 \ ^{\circ}C$

- <u>Isothermal</u> conditions, no diffusional limitations
- Negative CO reaction order
- Rate expression [moles/m²/s]:

$$r_{CO} = \frac{k_1 p_{CO} p_{O2}^{1/2}}{\left(1 + k_2 p_{CO}\right)^2}$$

52

EUROKIN 3, Billingham, June 2003

• Al support (sample A): influence of Toven:

• Comparison of Al and Steel supports (s = 0.5 mm): Al: $k_{sol} = 200 \text{ W/(m K)}$ vs. Steel: $k_{sol} = 20 \text{ W/(m K)}$

• Influences of support material and slab thickness:

55

• Comparison of lab-scale reactors:

56

Catalytic activity of Sample D vs. Powders in CO oxidation data are CO_2 productivities (g $CO_2/g_{cat}/h$)

EUROKIN 3, Billingham, June 2003

Engineering analysis: Data fit

• Regression results on T-profiles, Sample A:

High Conductivity Structured Catalysts: Conclusive remarks

- Heat conduction in the supports of structured metallic catalysts can be exploited to remove effectively the heat of reaction.
- Thermal conductivity and thickness of the support material are critical → catalyst design.
- In the case of highly conductive supports (Al),
 - isothermal runs are possible over wide ranges of operating conditions
 - heat transfer resistances at the catalyst/reactor interface become controlling.
- Results are of interest in view of applications to labscale microreactors for kinetic studies

Structured catalysts for catalytic combustion kinetics: main literature references

G. Groppi, E. Tronconi "Continuous versus discrete models of nonadiabatic monolith catalysts", AIChE Journal <u>42</u>, 2382-2387 (1996).

> G. Groppi, E. Tronconi, P. Forzatti "Mathematical models for catalytic combustors" Catalysis Reviews - Sci.Engng., 41(2), 227-254 (1999).

> > E. Tronconi, G. Groppi

"A study on the thermal behavior of structured plate-type catalysts with metallic supports for gas/solid exothermic reactions" Chem. Eng. Sci., 55, 6021-6036 (2000).

G. Groppi, W. Ibashi, E. Tronconi, P. Forzatti "Structured reactors for kinetic measurements under severe conditions in catalytic combustion over palladium supported systems" Catal. Today, 69, 399-408 (2001).