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Introduction

Transient kinetic experiments record the variation of certain
physical variables (concentrations, temperature, pressure) in 
response to a forced variation (pulse, step, ramp, oscillation) of 
another such variable.
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Introduction

Transient experiments outperform steady- state experiments in the 
determination of reaction mechanisms.

after K. Tamaru (1964), Adv. Catal., 15, 65‒90.
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Introduction

temporal analysis of products (TAP)

reactant
inlet pulse

outlet flux vs. time 
of reactants and 

products:
pulse responses

500 ms
0.25 ms

mass
spectrometer signal(s)

catalytic reactor bed
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Introduction

Pulse responses saved and processed as time series.
Typically, 20 pulse responses averaged to increase signal- to- noise
ratio.
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Physico- chemical model (including kinetic model involving assumptions
about reaction mechanism) retained if

• all parameter estimates are physico- chemically meaningful;

• the regression is adequate, showing no lack- of- fit (F statistics);

• all estimates are significant (t statistics).

Mechanism elucidation by
regression

experiment
experimental

pulse response

parameters

simulation
physico-
chemical

model

calculated
pulse response

Validity of a postulated reaction mechanism verified quantitatively (fully
reproducibly) through least- squares regression.

replicate data required

sum of 
square 

deviations

minimization procedure

statistics
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Former strategy: Regression of the average of the replicate time 
series.

Least- squares regression requires the errors to be

� Gaussian,

� Homoskedastic,

� Uncorrelated.

Mechanism elucidation by
regression

(central limit theorem)

mechanism verification procedure
not statistically sound!

coloured noise
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Second-order statistical regression
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Second-order statistical regression

transformed
average time 

series

� G
� H
� U

����

����

����

average experimental
time series

� G
� H
� U

����

����

����

� G
� H
� U

����

����

����

� G
� H
� U

����

����

����

preconditioning transformation

principal component analysis

rescaling



13

Second-order statistical regression
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Second-order statistical regression

matrixerror 

matrix data
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estimated error (noise) in the 2nd replicate time series
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Second-order statistical regression
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Singular value decomposition of the error matrix:

left singular vectors

positive singular values

right singular vectors

The left and right singular vectors are orthonormal:

The singular values are ordered:

TVΣUE =
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Second-order statistical regression

It can be proven that the orthogonal projection of the n
t
samples of 

the average time series on the first n
r
‒1 left singular vectors u

i
of 

the error matrix E yields n
r
‒1 new numbers, (sample) principal

components, expected to be uncorrelated:
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most of the error is found to be parallel to u1, next parallel to u2, 
etc. 
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Second-order statistical regression

PCA: important dimensionality decrease from n
t
to n

r
‒1 �

• no information lost w.r.t. the error
• quite some information lost w.r.t. the signal
To limit this loss to a minimum: preconditioning transformation:

(Discrete) integration of the time series
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Second-order statistical regression
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Numerical experiments

1. Single-response experiment.
Simulation of a simple diffusion TAP- experiment.

Typical error superposed in 20 × 20 replicates: autocorrelated 
Gaussian noise, 50 Hz oscillation with variable amplitude, random 
baseline shift, intensity variability.

De=2∙10-3 m²/s D
e
= ?

� NLSQ regression, SOSR
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Numerical experiments

true value

95% confidence intervals
SOSR
NLSQ

SOSR vs. NLSQ:
• confidence intervals more accurate:

3/20 successes for NLSQ; 17/20 for SOSR
(19/20 expected)

• estimates themselves more accurate

De

(m²/s)
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Numerical experiments

2. Multiple-response experiment
Simulation of a three- zone TAP- experiment. Propane is fed and is 

subject to total oxidation in the central, active, zone.

*10OH4CO3*O10HC 2283 ++→+ k
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Numerical experiments

Responses from simulation at 450 °C, 475 °C, 500 °C, 525 °C and 550 
°C, contaminated with typical TAP noise in 100 × 20 replicates.
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� NLSQ regression, 
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Numerical experiments
95 % confidence intervals

20/100

93/100

SOSR vs. NLSQ:
Confidence intervals more accurate.
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Numerical experiments
95 % confidence intervals

24/100

98/100

SOSR vs. NLSQ:
Confidence intervals more accurate.
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Application

TAP-reactor with a central zone of V2O5/TiO2 on
quartz:
irreversible adsorption of oxygen

*O 2* 2O2 →+ ak

2O 2O

Parameters estimated:
k
a

specific adsorption rate coefficient (m³/kg∙s)
D
e

Knudsen diffusion coefficient (m²/s)
N
O2

intensity of the pulse (mol)
U
0

baseline position (V)
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Application
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Application
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Application

correlation matrix
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Conclusions

A second- order statistical regression was developed to regress time 
series from transient kinetic experiments with heteroskedastic
and coloured noise.

Results: compared to NLSQ, increased accuracy of

• parameter estimates

• statistical information coming with the estimates

� elucidation of reaction mechanism
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