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Introduction

Transient kinetic experiments record the variation of certain
physical variables (concentrations, temperature, pressure) in

response to a forced variation (pulse, step, ramp, oscillation) of
another such variable.



Introduction

Transient experiments outperform steady date experiments in the
determination of reaction mechanisms.
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after K. Tamaru (1964 Adv. Catal 15 65-9(0).



Introduction

temporal analysis of products (TAP)

mass
spectrometer signal(s

. reactant catalytic reactor bed outlet flux vs. time
inlet pulse of reactants and
products:

pulse responses



Introduction

Pulse responses saved and processed as time series.
Typically, 20 pulse responses averaged to increase signal & roise
ratio.

pulse response
average pulse response
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Validity of a postulated reaction mechanism verified quantitatively (fully
reproducibly) through least sjuares regression.
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Physice demical model (including kinetic model involving assumptions
about reaction mechanism) retained if

e all parameter estimates are physico- demically meaningful;

* the regression is adequate, showing no lack ¢ fit (F statistics);

e all estimates are significant (t statistics).

replicate data required
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regression

Former strategy: Regression of the average of the replicate time
series.

coloured noise

pulse response
mean pulse response
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Least sjuares regression requires the errors to be
L] Gaussian ..

" (central limit theorem
L] Homoskede(lstic, )

O Treoaeleiesd mechanism verification procedure
' not statistically sound!
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Second-order statistical regression
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Second-order statistical regression
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Second-order statistical regression
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Second-order statistical regression
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error matrix |

estimated error (noise) in the 2nd replicate time series
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Second-order statistical regression

Singular value decomposition of the error matrix:E =UX V'

left singular vectors
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The left and right singular vectors are orthonormal:
T[] = T\ —
uu=Il, vV V=Il,

The singular values are ordered:

§>%>m>%ﬂ>0
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7 positive singular values

right singular vectors
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Second-order statistical regression

It can be proven that the orthogonal projection of the 1, samples of
the average time series on the first n 1 left singular vectors u; of
the error matrix E yields n,—1 new numbers, (sample) principal
components, expected to be uncorrelated:
[ 2
Ta (T &

S 1'gl= 2
cov(ui S,U; s) =3 (n -1)
0 else.
Ass >s,>--->s, , >0, apparently
most of the error is found to be parallel to u,, next parallel to u,,
etc.

ifi=],
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Second-order statistical regression

PCA: important dimensionality decrease from n, to n -1 =

* no information lost w.r.t. the error

* quite some information lost w.r.t. the signal

To limit this loss to a minimum: preconditioning transformation:
(Discrete) integration of the time series

1000
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Second-order statistical regression

average experimental model a@lculated
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Numerical experiments

1. Single-response experiment.
Simulation of a simple diffusion TAP eperiment.

M‘\ D=7
Y 2 NLSQ regression, SOSR

Y
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Typical error superposed in 20 x 20 replicates: autocorrelated
Gaussian noise, 50 Hz oscillation with variable amplitude, random
baseline shift, intensity variability.
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Numerical experiments

0.00203 - 95% confidence intervals
SOSR . . .
NLSQ
0.00202 | | |
0.00201 | '] H !
2 MEARRiiueg |
e 0.002 | 1 mJ i |
0.00199 t " I I
} SOSR vs. NLSQ:
l ¢ confidence intervals more accurate:
0.00198 3/20 successes for NLSQ; 17/20 for SOSR
l (19/20 expected)
e ecstimates themselves more accurate

0.00197 -



Numerical experiments

2. Multiple-response experiment

Simulation of a three @ne TAP eperiment. Propane is fed and is
subject to total oxidation in the central, active, zone.

C,H, +100* (f - 3CO, +4 H,0+10*

_Ea
rs = ks CC3H8/ ks = ksO j KQDF
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Numerical experiments

Responses from simulation at 450 °C, 475 °C, 500 °C, 525 °C and 550
°C, contaminated with typical TAP noise in 100 x 20 replicates.

ko =10m? /kg 3 .
E, =40KkJ/mol 30
25
20
15
10
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t(s)

= NLSQ regression,
SOSR
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Numerical experiments

95 % confidence intervals

NLSQ
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Numerical experiments

95 % confidence intervals
NLSQ

E,
(kJ/mol)
24/100

SOSR vs. NLSQ:
Confidence intervals more accurate.
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Application

TAP-reactor with a central zone of V,0O./TiO, on

Parameters estimated:
k, specific adsorption rate coetficient (m3/kg-s)
@, Knudsen diffusion coefficient (m?/s)

Ny, intensity of the pulse (mol)
U,  baseline position (V)
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SOSR fit ~----

Application

experimental
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Application
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Application

—(0.8908 0.8264| 0.6711
%, —0.8908 1 —0.8722 —0.4115

correlation matrix

No, 0.8264 —0.8722 1 0.4090
Uy 0.6711 —-0.4115 0.4090 1
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Conclusions

A secone oder statistical regression was developed to regress time
series from transient kinetic experiments with heteroskedastic
and coloured noise.

Results: compared to NLSQ, increased accuracy of

e  parameter estimates

e  statistical information coming with the estimates
- elucidation of reaction mechanism
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