

Robinson-Mahoney reactors as a tool for assessing multi-phase kinetics at laboratory scale

Joris W. Thybaut and Guy B. Marin

Laboratory for Chemical Technology

Eurokin Workshop, Milano, February 26, 2008

http://www.lct.UGent.be

solid catalysts in gas-liquid mixtures

- hydroprocessing / refining
 - hydrocracking
 - hydrodesulphurization
 - aromatic hydrogenation
- fine chemicals

. . .

- hydrogenation reactions

industrial operation

- trickle bed reactors
 - fixed catalyst bed
 - cocurrent down flow of the gas and the liquid phase
 - adiabatic reactor
 - high temperature
 - high pressure

lab scale testing

plug flow reactors

advantages

- ease of construction

ease of operation

mixed flow reactors

- advantages
 - flow pattern ideality
 - avoiding mass transport limitations

- disadvantages
 - flow pattern ideality difficult to realize
 - mass transport
 limitations more likely

- disadvantages
 - long stabilization times
 - moving equipment

plug flow: practical reasons mixed flow: fundamental reasons

- experimental set-up
- reactor description
 - flow pattern
 - outlet configuration
 - residence time
- effluent section
 - gas-liquid separation
 - measurement outlet flow rates
- gas/liquid composition
 - phase equilibrium
 - individual phase composition
- example

scheme experimental set-up

experimental set-up

'live' view experimental set-up

- experimental set-up
- reactor description
 - flow pattern
 - outlet configuration
 - residence time
- effluent section
 - gas-liquid separation
 - measurement outlet flow rates
- gas/liquid composition
 - phase equilibrium
 - individual phase composition
- example

flow pattern

- impeller
 - horizontal central blades
 - top blades tilted by -45°
 - bottom blades tilted by 45°
- flow
 - from centre to wall at middle height
 - from wall to centre at top and bottom
- catalyst location
 - centre of the basket
 - glass wool at top and bottom

outlet configuration

• original

adaptations

residence time distribution

extended measurements using water and air with an inlet pulse response of methylene blue

NI _{gas} /I _{liq}	0	200	500
liquid volume (cc)	255	248	200

confirmed by step response of $n-C_{14}$ in $n-C_{12}$ at reaction conditions

- experimental set-up
- reactor description
 - flow pattern
 - outlet configuration
 - residence time
- effluent section
 - gas-liquid separation
 - measurement outlet flow rates
- gas/liquid composition
 - phase equilibrium
 - individual phase composition
- example

gas liquid separation

- separation at reactor conditions (max 250 ℃)
- 10 cyclone
- 11 demister
- 12 back pressure regulator (gas effluent)
- 15 level tube
- 16 level control
- 17 automated valve (liquid effluent)
- 18 needle valve

outlet flow rate measurement

- gas effluent: internal standard
- flashed gas: gas burette
- flashed liquid: liquid burette

amount of internal standard in flashed gas and liquid to be accounted for

- experimental set-up
- reactor description
 - flow pattern
 - outlet configuration
 - residence time
- effluent section
 - gas-liquid separation
 - measurement outlet flow rates
- gas/liquid composition
 - phase equilibrium
 - individual phase composition
- example

phase equilibrium calculations

set of 2n+2 equations in number of components $\frac{y_i}{x_i} = K_i = \frac{\Phi_i^l(T, p_t, x_1, ..., x_n)}{\Phi_i^g(T, p_t, y_1, ..., y_n)}$ $F z_i = F^l x_i + F^g y_i$

fugacity coefficients from equation of state: Peng Robinson, Soave-Redlich-Kwong, with interaction factors for hydrogen according to Moysan (CES 38 1983)

$$X = \sum_{i} x_{i} - 1 = 0$$
$$Y = \sum_{i} y_{i} - 1 = 0$$

l

calculation results

- gas and liquid phase composition
- $H_2 nC_{12} benzothiophene (BT)$

ratio $nC_{12} - BT$

	exp	calc
gas	34.2	34.0
liquid	28.1	27.5

similar verification for parapur hydrocracking effluent has been performed (Muñoz, 2001) gas and liquid fraction in the reactor

	exp	calc
gas	0.2	0.8
liquid	0.8	0.2

calculated values strongly depend on gas – liquid feed ratio different hold-up for gas and liquid

- experimental set-up
- reactor description
 - flow pattern
 - outlet configuration
 - residence time
- effluent section
 - gas-liquid separation
 - measurement outlet flow rates
- gas/liquid composition
 - phase equilibrium
 - individual phase composition
- example

experimental data

catalyst:

NiMo/y-Al₂O₃ catalyst Procatalyse EC220/99/23 Mo/Ni = 3.7

model components and reaction conditions:

experimental results

553 K, 4 MPa, H_2/H_2S 40, $H_2/Naphthalene$ 15.5

rate equations

homolytic dissociation

$$R_{T} = \frac{C_{t,*}^{2} k_{3} K_{N \to NH_{2}} K_{N} K_{H_{2}}^{3/2} f_{N} f_{H_{2}}^{3/2} \left(1 - \frac{f_{T}}{K_{eq} f_{N} f_{H_{2}}^{2}}\right)}{\left[1 + K_{N} f_{N} + \sqrt{K_{H_{2},*} f_{H_{2}}} + \frac{K_{H_{2}S} f_{H_{2}S}}{\sqrt{K_{H_{2},\bullet-S^{2-}} f_{H_{2}}}} + K_{T} f_{T}\right]^{2}}$$

$$k_{3}^{comp}$$
; $K_{H_{2},*}$; $K_{H_{2},\bullet-S^{2-}}$; K_{N} ; $K_{H_{2}S}$; K_{T}

heterolytic dissociation

$$C_{t,*}^{2} k_{3} K_{N \to NH_{2}} K_{N} K_{H_{2}}^{2} f_{N} f_{H_{2}}^{2} \left(1 - \frac{f_{T}}{K_{eq} f_{N} f_{H_{2}}^{2}} \right)$$

$$R_{T} = \frac{1}{\sqrt{(1 + K_{N} f_{N} + K_{T} f_{T})(K_{H_{2}} f_{H_{2}} + K_{H_{2}S} f_{H_{2}S})}} \left(\sqrt{1 + K_{N} f_{N} + K_{T} f_{T}} + \sqrt{K_{H_{2}} f_{H_{2}} + K_{H_{2}S} f_{H_{2}S}} \right)^{2}}{\sqrt{(1 + K_{N} f_{N} + K_{T} f_{T})(K_{H_{2}} f_{H_{2}} + K_{H_{2}S} f_{H_{2}S})}} \left(\sqrt{1 + K_{N} f_{N} + K_{T} f_{T}} + \sqrt{K_{H_{2}} f_{H_{2}} + K_{H_{2}S} f_{H_{2}S}} \right)^{2}}$$

$$k_{3}^{comp} ; K_{H_{2}} ; K_{N} ; K_{H_{2}S} ; K_{T}$$

model performance

estimated parameter values

Parameter	Model 3	Model 11	
E_a^{comp} , kJ mol ⁻¹	-41.5 ± 17.5	-37.7 ± 13.2	
⊿H° _N , kJ mol⁻¹	-50.0	-48.0	
⊿H° _{H2,} ∗, kJ mol⁻¹	-80.0 ± 32.1	-82.5 ± 27.7	
<i>∆H°_{H2, ?-S}₂-</i> , kJ mol ⁻¹	-47.0	n. c.	
⊿H° _{H2S} , kJ mol⁻¹	-128 ± 20.8	-109 ± 19.7	
⊿H° ₇ , kJ mol⁻¹	-40.0	-40.0	
امله ممير مطلحين المصيماني الممير معرفي مراجع			

n. c. not considered in the model

Cortes et al. Catal. Today (2008)

conclusions

- pulse and step response measurements are in agreement with an assumed mixed flow behavior of a Robinson-Mahoney reactor
- separation at high T allows assessing phase equilibria
- composition within each phase is found close to equilibrium
- gas and liquid fraction determined by hold-up <> from equilibrium
- Adequate kinetic models can be constructed with physically significant parameters from RM-data