

Creating and Harnessing Complex Reaction Networks: Application to Oxidation Chemistry

Linda J. Broadbelt, Shumaila S. Khan and Jim Pfaendtner

Department of Chemical and Biological Engineering Northwestern University Evanston, IL 60208

Why Do Lubricants Fail?

 The lubricant is used under engine operating conditions (T,P) where oxidation chemistry can occur

 The lubricant breaks down thermally and additives and antioxidants are consumed and/or fail

Overall reaction

Alkane -> alcohols, acids, ketones, hydroperoxides

How Can We Reduce Tropospheric Ozone Formation?

www.inrets.fr/ur/umrette/ progdetail.htm

 Ozone poses a threat to human health

 Emissions of volatile organic compounds from stationary and mobile sources lead to the formation of urban smog

www.inrets.fr/ur/umrette/ progdetail.htm

How Can We Create Biofuels from Natural Resources?

- www.clemson.edu/edisto/ corn/corn.htm
- Biochemical processes are being explored as alternatives to traditional chemical processes

 Concern over dwindling petroleumbased resources sparks exploration of alternative feedstocks

www.timberland.com/.../ tim_ product_detail.jsp?OID=18298

Overall reaction

Common Thread: Complex Reacting Systems

Hundreds or thousands of reacting species comprise reaction network

Predicting system behavior requires understanding of the interplay among the components of the reaction network

Components of the Reaction Network

- Reactants, intermediates and products
- Reactions
- Thermodynamic parameters
- Kinetic parameters

Challenges for Reaction Network Development

- Reactive intermediates have not been detected
- Pathways have not been elucidated experimentally
- Thermodynamic and kinetic parameters are unknown
- Reaction networks are large
- Construction is tedious and prone to user's bias and errors

Computer generation of reaction networks

Elements of Computer Generated Reaction Networks

• Graph Theory

- Reaction Matrix
 Operations
- Reactants Connectivity Scan

Reaction

Types

Reaction Rules

- Uniqueness
 Determination
- Property
 Calculation
- Termination
 Criteria

Bond-Electron Representation Allows Implementation of Chemical Reaction

- ij entries denote the bond order between atoms i and j
- ii entries designate the number of nonbonded electrons associated with atom i

Chemical Reaction as a Matrix Addition Operation

Complex Chemistry Summarized in Terms of Reaction Matrices

Lubricant degradation

9 reaction families

Tropospheric ozone formation

15 thermal reaction families5 photolysis reaction families22 small molecule reactions

205 unique enzyme actions in KEGG database at i.j.k level

Production of biofuels from biomass

Unconstrained Network Growth

Iterative Rate-Based Network Construction

Why Do Lubricants Fail?

 The lubricant is used under engine operating conditions (T,P) where oxidation chemistry can occur

 The lubricant breaks down thermally and additives and antioxidants are consumed and/or fail

Overall reaction

Alkane -> alcohols, acids, ketones, hydroperoxides

Complex Chemistry Represented by a Small Number of Reaction Families

- Each reaction family is represented by its reaction matrix
- Detailed literature search revealed relevant reactions for alkanes, aldehydes, alcohols, carboxylic acids, and ketones:
 - Nine reaction families
 - Primary initiation, bond fission, hydroperoxide decomposition, oxygen addition, β-scission, hydrogen transfer, disproportionation, recombination and Baeyer-Villiger reaction

The model is parameterized in a systematic fashion

Correlations Greatly Reduce Parameterization

- Rate constants estimated according to reaction family
- Correlations have 2 or 3 parameters

$$k = Ae^{-E/RT} \qquad E = E_o + \alpha \Delta H_{rxn} \quad \text{The Evans-Polanyi relationship}$$

$$O(10^3) \qquad O(10^3) \qquad O(10^3) \qquad O(10^1)$$
reactions rate constants $A, E_0, \alpha \text{ values}$

 Parameters regressed from experiment or found in literature or obtained from quantum chemical calculations

Correlations greatly reduce parameterization

 Evans-Polanyi parameters were regressed from over 400 experimental data points for hydrogen transfer reactions

$$E = E_o + \alpha \Delta H_{rxn}$$

$$\Delta H_{rxn} > 0 , E_a = 8 + 0.8 \Delta H_{rxn}$$
$$\Delta H_{rxn} < 0 , E_a = 8 + 0.2 \Delta H_{rxn}$$

Data and figure from Blowers P., Masel R., AIChE J., 46, 2000

The need for specificity in kinetic correlations

Kinetic data for hydrogen transfer in aromatic-containing molecules (ROO• + RH)

Experimental data obtained from Sheldon and Kochi (1981)

The need for diversity in kinetic correlations

- **Options for specifying reaction families:**
- Specify by radical type:

 $\left. \begin{array}{c} R \bullet + R'H \\ RO \bullet + R'H \\ ROO \bullet + R'H \end{array} \right\} \text{ products}$

- Specify by substrate:
 - $R \bullet + RH$ $R \bullet + R'COH$ $R \bullet + R'(OOH)H$ products

Kinetic properties are estimated from transition state theory

Investigate hydrogen transfer reactions using quantum chemistry

R• + R'H -> RH + R'•

32 different reactions (forward and reverse pairs)

Quantum chemistry can reliably predict experimental data: *enthalpy of reaction*

△H_{rxn} (experiment) (kcal/mol)

Quantum chemistry can reliably predict experimental data: *activation energy*

Ea (experiment) (kcal/mol)

Results for bimolecular hydrogen transfer

experimental data (X,+) available in NIST chemical kinetics database (http://kinetics.nist.gov)

Comparison with previous correlation

experimental activation energies (X,+) available at the NIST chemical kinetics database (http://kinetics.nist.gov)

ROO• + R'H: Contrathermodynamic behavior

Reaction coordinate following reveals loosely bound adducts

Reaction Coordinate

Hydrogen transfer specified according to sub-families

- Oxidation of alkanes involves hundreds or thousands of hydrogen transfer reactions
 - < 1% experimentally available</p>
- Evans-Polanyi parameters were regressed from quantum chemistry calculations $F = E \pm \alpha \Lambda$

$$E_a = E_o + \alpha \Delta H_{rxn}$$

Six separate correlations:

- 1. $RO \cdot + R'H$
- 2. ROO + R'H
- 3. ROO• + R(CO)H (aldehydes)
- 4. ROO• + HCOOH (ketone forming)
- 5. $R \bullet + RC(O)R'$ (ketone consuming)
- 6. R• + R'H "everything else"

Iterative Rate-Based Network Construction

Application to decane autoxidation - prediction

Data from A. Syroezhko, V. Potekhin, and V Proskuryakov, J. Appl. Chem. USSR., 46, 1970

Data from A. Syroezhko, V. Potekhin, and V Proskuryakov, J. Appl. Chem. USSR., 46, 1970

Iterative Rate-Based Network Construction

Prediction of octane autoxidation

Data from F. Garcia-Ochoa et al., Ind. Eng. Chem. Res., 28, 1989

Insight into dominant reaction pathways

How Can We Reduce Tropospheric Ozone Formation?

www.inrets.fr/ur/umrette/ progdetail.htm

 Ozone poses a threat to human health

 Emissions of volatile organic compounds from stationary and mobile sources lead to the formation of urban smog

www.inrets.fr/ur/umrette/ progdetail.htm

Complex Chemistry Summarized in Terms of Reaction Matrices

Tropospheric ozone formation

15 thermal reaction families5 photolysis reaction families22 small molecule reactions

Reaction Families

Initiation	Bond Fission	$RXYR \rightarrow RX + RY$
	Oxygen Addition	$\bullet CH_3 + O_2 \rightarrow CH_3OO \bullet$
Propagation	Peroxy & NO Radical Reaction	$CH_3OO \bullet + \bullet NO \rightarrow CH_3O \bullet + \bullet NO_2$
	Oxygen Disproportionation	$C_2H_5OO\bullet + CH_3O\bullet \rightarrow C_2H_5O\bullet + \bullet CH_3 + O_2$
	Carbon Radical & Oxygen Reaction	$\bullet CH_2CH_3 + O_2 \rightarrow C_2H_4 + HOO \bullet$
	Radical Addition	$R\bullet + C_2H_4 \rightarrow \bullet CH_2CH_2R$
	Alkoxy Radical & Oxygen Reaction	$CH_3O^{\bullet} + O_2 \rightarrow HCHO + HOO^{\bullet}$
	β-Scission	$C_2H_5O \rightarrow \bullet CH_3 + HCHO$
	One-Five Radical Shift	$n - C_4 H_9 O \bullet \rightarrow \bullet C_4 H_8 O H$
	Hydrogen Abstraction	$R\bullet + CH_4 \rightarrow RH + \bullet CH_3$
Termination	Radical Recombination	$\bullet R_1 + \bullet R_2 \rightarrow R_1 R_2$
	Peroxy Radical Disproportionation	$2 \text{ CH}_{3}\text{OO} \rightarrow \text{HCHO} + \text{CH}_{3}\text{OH} + \text{O}_{2}$
	Peroxy Radical Recombination	$2 \text{ CH}_{3}\text{OO} \rightarrow \text{CH}_{3}\text{OOCH}_{3} + \text{O}_{2}$
	Peroxy & NO Radical Recombination	$CH_3OO + \bullet NO \rightarrow CH_3ONO_2$
	Alkoxy Radical & NO _x Reaction	CH₂O• + •NO → HCHO + HNO
		$HCHO + hv \rightarrow CO + H_2$
Photolysis	Decarbonylation	$HCHO + h\nu \rightarrow H \bullet + \bullet CHO$
	Norrish Type I	$R_1CH_2CH_2CH_2COR_2 + h\nu \rightarrow R_1CHCH_2 +$
	Norrish Type II	R ₂ COCH ₃
	N-O Bond Breakage	$R_1 ONR_2 + hv \rightarrow R_1 O \bullet + R_2 N \bullet$
	O-O Bond Breakage	$R_1 OOR_2 + hv \rightarrow R_1 O \bullet + R_2 O \bullet$

Experimental Systems Modeled

• Formaldehyde

- Indoor chamber (ETC, ~4 m³)
 - Blacklight to mimic sunlight

- Outdoor chamber (~300 m³)
 - Exposed to natural sunlight
 - Monitor major reactant and product species (HCHO, O₃, NO, NO₂)
- Acetaldehyde and n-Octane Mixture
 - Indoor chamber (DTC)
 - Blacklight to mimic sunlight
 - Monitor major reactant and product species (CH₃CHO, nC8, O₃, NO, Nitrates, PAN, HCHO)
- Acetaldehyde, Formaldehyde and n-Octane Mixture
 - Indoor chamber (XTC)
 - Xenon light source to mimic sunlight
 - Monitor major reactant and product species (HCHO, CH₃CHO, O₃, NO, Nitrates, PAN)

Formaldehyde Indoor Chamber Results

Optimization of Rate Parameters for Formaldehyde Indoor Chamber

• Optimize parameters to which the model is most sensitive

Optimized 1 reaction family A

• All concentrations agree well with experimental data

Comparison to a Lumped Model

- Dashed lines are results from the SAPRC99 software by Carter
- Explicit model is more accurate than the lumped structure model

Experimental Systems Modeled

- Formaldehyde
 - Indoor chamber (ITC, ~4 m³)
 - Blacklight to mimic sunlight
 - Monitor major reactant and product species (HCHO, O₃, NO, Nitrates)
 - Outdoor chamber (~300 m³)
 - Exposed to natural sunlight
 - Monitor major reactant and product species (HCHO, O₃, NO, NO₂)
- Acetaldehyde and n-Octane Mixture
 - Indoor chamber (DTC)
 - Blacklight to mimic sunlight
 - Monitor major reactant and product species
 - (CH₃CHO, nC8, O₃, NO, Nitrates, PAN, HCHO)
- Acetaldehyde, Formaldehyde and n-Octane Mixture
 - Indoor chamber (XTC)
 - Xenon light source to mimic sunlight
 - Monitor major reactant and product species (HCHO, CH₃CHO, O₃, NO, Nitrates, PAN)

Indoor Chamber Parameters Applied to Outdoor Chamber

Mechanism

Same as indoor

chamber with different

- All concentrations agree reasonably well with • experimental data
- No adjustment in parameters

Experimental Systems Modeled

- Formaldehyde
 - Indoor chamber (ITC, ~4 m³)
 - Blacklight to mimic sunlight
 - Monitor major reactant and product species (HCHO, O₃, NO, Nitrates)
 - Outdoor chamber (~300 m³)
 - Exposed to natural sunlight
 - Monitor major reactant and product species (HCHO, O₃, NO, NO₂)
- Acetaldehyde and n-Octane Mixture
 - Indoor chamber (DTC)
 - Blacklight to mimic sunlight
 - Monitor major reactant and product species
 - (CH₃CHO, nC8, O₃, NO, Nitrates, PAN, HCHO)
- Acetaldehyde, Formaldehyde and n-Octane Mixture
 - Indoor chamber (XTC)
 - Xenon light source to mimic sunlight
 - Monitor major reactant and product species (HCHO, CH₃CHO, O₃, NO, Nitrates, PAN) Carte

Carter, W. P. L. Final Report to California Air Resources Board, **2000**. <u>http://airchem.sph.unc.edu/Research/Facilities/UNCChamber/default.htm#tomap</u>

Acetaldehyde-n-Octane Indoor Chamber Results

- Apply the parameters from the optimized formaldehyde model
- Trends are all captured very well
- No adjustment in parameters

Mechanism 305 species 4555 reactions 1x10⁻⁴ threshold

Experimental Systems Modeled

- Formaldehyde
 - Indoor chamber (ITC, ~4 m³)
 - Blacklight to mimic sunlight
 - Monitor major reactant and product species (HCHO, O₃, NO, Nitrates)
 - Outdoor chamber (~300 m³)
 - Exposed to natural sunlight
 - Monitor major reactant and product species (HCHO, O₃, NO, NO₂)
- Acetaldehyde and n-Octane Mixture
 - Indoor chamber (DTC)
 - Blacklight to mimic sunlight
 - Monitor major reactant and product species
 - (CH₃CHO, nC8, O₃, NO, Nitrates, PAN, HCHO)
- Acetaldehyde, Formaldehyde and n-Octane Mixture
 - Indoor chamber (XTC)
 - Xenon light source to mimic sunlight
 - Monitor major reactant and product species (HCHO, CH₃CHO, O₃, NO, Nitrates, PAN)

Formaldehyde-Acetaldehyde-*n*-Octane Indoor Chamber Results

Accomplishments

- Reaction families and kinetic correlations for condensed-phase hydrocarbon autoxidation and atmospheric oxidation of volatile organic compounds
- Incorporation of oxidation chemistry into automated mechanism generation framework
- Creation of reaction mechanisms which quantitatively describe degradation of model lubricants and tropospheric ozone formation

Acknowledgments

National Science Foundation IGERT program

Environmental Protection Agency

