

Single-Event Microkinetic Assisted Design of New and Improved Catalytic Materials

J. W. Thybaut and Guy B. Marin

Laboratory for Chemical Technology http://www.lct.UGent.be

model based catalyst design

SEMK: application domains

- thermal cracking
- acid catalysis
 - catalytic cracking
 - methanol to olefins
- metal catalysis
 - Fischer Tropsch synthesis
 - hydrogenation
- bifunctional catalysis
 - hydrocracking
 - catalytic reforming

essential features

- large number of species
- large number of elementary steps
- limited number of reaction families defined based on
 - reaction type
 - alkyl shift, PCP branching, β-scission,...
 - methylene insertion, reductive elimination,...
 - types of intermediates involved
 - carbon atom type in reactive moiety of reactant and product
- accounting for symmetry effects

single-event = accounting for symmetry

reaction family of s,s methylshift

rate coefficient

$$k = \frac{k_b T}{h} \exp\left(\frac{\Delta S^{0,\#}}{R}\right) \exp\left(-\frac{\Delta H^{0,\#}}{RT}\right) \qquad S = -\ln\sigma_{global} + \widetilde{S}$$

• writing symmetry explicitly

$$k = \frac{\sigma_{global}^{reactant}}{\sigma_{global}^{\#}} \frac{k_b T}{h} \exp\left(\frac{\Delta \widetilde{S}^{0,\#}}{R}\right) \exp\left(-\frac{\Delta H^{0,\#}}{RT}\right)$$

$$k = n_e \widetilde{k}_{MS}(s;s)$$

number of single events determination

- alkyl shift from 2methyl-hex-3-yl to 3methyl-hex-2-yl H_{r} , CH_3 + $r_e=4$, CH_3 , $r_e=2$, $r_e=2$, $r_e=2$, $r_e=3^3$, $r_e=\frac{3^3}{2}$
- PCP branching from 5methyl-hex-3-yl to 2,2dimethylpent-3-yl

outline

- necessary tools
 - reaction network generation
 - thermodynamic data generation
 - simulation and regression
- case 1: hydroconversion
 - USY-zeolite: free carbenium ion chemistry
 - ZSM-22: shape selectivity
- case 2: Fischer Tropsch synthesis
 - Fe and Co catalysts

network generation: label representation

0 1 2 2 2 2 2 2 1 26 26 26 26 26 26 26 24

0 1 2 3 3 2 1 1 1 26 25 25 26 26 26 26 26

	1	2	3	4	5	6	7	8	
1		1							-
2	1		1						+2
3		1		1					
4			1		1				
5				1		1			
6					1		1		
7						1		1	
8							1		
	2	2	C	0	0	C	C	1	
	י 26	∠ 5.26	∠ 26	∠ 26	∠ 26	∠ 26	∠ 26	ו 26	5

26 26 26 26 26 26 26 26 26

reaction network generation

 $A^2 - I$: identification of the next nearest neighbours

network generation algorithm

network generation results

$ \begin{array}{c} 0 \\ 1 & 2 & 2 & 2 & 2 & 2 & 2 & 1 \\ 26 & 26 & 26 & 26 & 26 & 26 & 26 & 26$	•	feedstock: n-nonane		٠	feedstocl	k: n-no	nadecane	Э		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0		0						
$26\ 26\ 26\ 26\ 26\ 26\ 26\ 26\ 26\ 26\ $		1 2 2 2 2 2 2 2 1		1 2 2	2 2 2	2 2	2 2 2	2 2	2 2 2	2 2 2 1
 final results: n-nonane hydrocracking paraffins: 44 olefin: 175 carbenium ions: 138 hydrogenation: 175 dehydrogenation: 175 metal catalysed hydrogenation: 25065 dehydrogenation: 175 metal catalysed hydrogenation: 25065 dehydrogenation: 175 protonation: 262 hydride shifts: 174 alkyl shifts: 182 PCP branching: 272 PCB branching: 254 beta scission: 53 deprotonation: 262 		26 26 26 26 26 26 26 26 26 2	6	26 26 26	6 26 26 26	6 26 26	26 26 26	6 26 2	6 26 26 2	26 26 26 26
 n-nonane hydrocracking paraffins: 44 olefin: 175 carbenium ions: 138 products hydrogenation: 175 dehydrogenation: 175 protonation: 262 hydride shifts: 174 alkyl shifts: 182 PCP branching: 272 PCB branching: 254 beta scission: 53 deprotonation: 262 heta scission: 53 deprotonation: 262 heta scission: 262 heta scission: 53 deprotonation: 262 heta scission: 53 deprotonation: 262 heta scission: 262 heta scission: 53 deprotonation: 262 heta scission: 4260 	•	final results:		•	final resu	ılts:				
 paraffins: 44 olefin: 175 carbenium ions: 138 products olefin: 25065 carbenium ions: 20437 hydrogenation: 175 metal catalysed hydrogenation: 25065 dehydrogenation: 175 metal catalysed hydrogenation: 25065 dehydrogenation: 175 protonation: 262 hydride shifts: 174 alkyl shifts: 182 PCP branching: 272 PCB branching: 254 beta scission: 53 deprotonation: 262 		 – n-nonane hydrocrackii 	ng		– n-n	onade	ecane hy	/droc	racking	
 olefin: 175 carbenium ions: 138 hydrogenation: 175 metal catalysed hydrogenation: 25065 dehydrogenation: 175 metal catalysed hydrogenation: 25065 dehydrogenation: 175 reactions protonation: 262 hydride shifts: 174 alkyl shifts: 182 PCP branching: 272 PCB branching: 254 beta scission: 53 deprotonation: 262 hydride sigs: 53 deprotonation: 262 hydrogenation: 53 deprotonation: 262 hydrogenation: 262 hydride shifts: 182 PCB branching: 254 beta scission: 53 deprotonation: 262 		 paraffins: 	44)		ſ	para	ffins:		1981	
 carbenium ions: 138 hydrogenation: 175 dehydrogenation: 175 metal catalysed hydrogenation: 25065 dehydrogenation: 175 reactions protonation: 262 hydride shifts: 174 alkyl shifts: 182 PCP branching: 272 PCB branching: 254 beta scission: 53 deprotonation: 262 acid catalysed protonation: 42600 hydride shifts: 12470 PCP branching: 254 beta scission: 53 deprotonation: 262 		• olefin:	175 } prod	ucts	{ •	olefi	า:		25065	
 hydrogenation: 175 metal catalysed ehydrogenation: 25065 dehydrogenation: 175 metal catalysed ehydrogenation: 25065 protonation: 262 hydride shifts: 174 alkyl shifts: 182 PCP branching: 272 PCB branching: 254 beta scission: 53 deprotonation: 262 		 carbenium ions: 	138 ^J		l	carb	enium io	ons:	20437	
 dehydrogenation: 175 freactions dehydrogenation: 25065 protonation: 262 hydride shifts: 174 alkyl shifts: 182 PCP branching: 272 PCB branching: 254 beta scission: 53 deprotonation: 262 reactions dehydrogenation: 25065 protonation: 42600 hydride shifts: 33352 alkyl shifts: 12470 PCP branching: 15970 PCB branching: 264 beta scission: 53 deprotonation: 262 		 hydrogenation: 	175] meta	l cataly	sed	hydr	ogenatic	on:	25065	
 protonation: 262 hydride shifts: 174 alkyl shifts: 182 PCP branching: 272 PCB branching: 254 beta scission: 53 deprotonation: 262 protonation: 42600 hydride shifts: 33352 alkyl shifts: 12470 PCP branching: 15970 PCB branching: 20300 beta scission: 6429 deprotonation: 42600 		 dehydrogenation: 	175 ∫ react	ions	1 •	dehy	drogena	ation	25065	
 hydride shifts: 174 alkyl shifts: 182 PCP branching: 272 PCB branching: 254 beta scission: 53 deprotonation: 262 		 protonation: 	262		(•	proto	onation:		42600	
 alkyl shifts: PCP branching: PCB branching: beta scission: deprotonation: 262 acid catalysed acid catalysed PCP branching: PCP branching: PCB branching: <l< td=""><td></td><td> hydride shifts: </td><td>174</td><td></td><td>•</td><td>hydr</td><td>ide shifts</td><td>S:</td><td>33352</td><td></td></l<>		 hydride shifts: 	174		•	hydr	ide shifts	S:	33352	
 PCP branching: 272 PCB branching: 254 beta scission: 53 deprotonation: 262 acid catalysed PCP branching: 15970 PCB branching: 20300 beta scission: 6429 deprotonation: 42600 		 alkyl shifts: 	182 and		•	alkyl	shifts:		12470	
 PCB branching: 254 beta scission: 53 deprotonation: 262 reactions PCB branching: 20300 beta scission: 6429 deprotonation: 42600 		PCP branching:		catalyse	ea 🗸 🔹	PCP	branchi	ng:	15970	
 beta scission: 53 deprotonation: 262 beta scission: 6429 deprotonation: 42600 		PCB branching:	254 react	ions		PCB	branchi	ng:	20300	
deprotonation: 262 deprotonation: 42600		 beta scission: 	53		•	beta	scission	າ:	6429	
•		 deprotonation: 	262)		•	depr	otonatio	n:	42600	

thermodynamic data generation

- acid catalysis
 - enthalpy, entropy and specific heat capacity of alkanes and alkenes: group contribution method (Benson)
 - recognition of contributions from label representation
 - carbenium ions: from alkenes and standard protonation enthalpy
- metal catalysis
 - gas phase species: group contribution
 - surface species: UBI-QEP + assessment degrees of freedom

thermodynamic data: UBI/QEP

 heats of formation of surface species from atomic chemisorption enthalpies

µKinetic Engine

outline

- necessary tools
 - reaction network generation
 - thermodynamic data generation
 - simulation and regression
- case 1: hydroisomerization/-cracking
 - USY-zeolite: free carbenium ion chemistry
 - ZSM-22: shape selectivity
- case 2: Fischer Tropsch synthesis
 - Fe and Co catalysts

catalysts in hydrocracking

- USY
 - no shape selectivity
 - tuning acidity by dealumination

- ZSM-22
 - shape selectivity
 - enhanced monobranched isomer yield
 - suppressed cracking

hydroisomerization/-cracking

building blocks rate equation

detailed rate equation

net rates of formation

summation of all elementary steps

$$\begin{split} R_{P_{i}} &= \sum_{k} R_{R_{i,k}^{+}}^{AS/PCP/\beta} + \sum_{j} R_{O_{i,j}}^{\beta} \\ R_{O_{i,j}}^{\beta} &= \sum_{l} \sum_{o} r^{\beta} \left(m_{l,o}; m_{q,r}, O_{i,j} \right) \\ R_{R_{i,k}^{+}}^{AS/PCP/\beta} &= \sum_{l} \sum_{o} r^{AS/PCP} \left(m_{l,o}; m_{i,k} \right) - \sum_{l} \sum_{o} r^{AS/PCP} \left(m_{i,k}; m_{l,o} \right) \\ &+ \sum_{l} \sum_{o} r^{\beta} \left(m_{l,o}; m_{i,k}, O_{u,v} \right) - \sum_{l} \sum_{o} r^{\beta} \left(m_{i,k}; m_{l,o}, O_{u,v} \right) \end{split}$$

reference parameter values

	Alkylshift	PCP- branching	β-scission	protonation
		kJ n	nol ⁻¹	
(s;s)	76.4 (±0.7) ^a	104.7 (±0.3)	139.8 (±0.7)	-59.2 ^c (±0.3)
(s;t)	72.2h(10.2)	OE Ch(10.2)	127.3 (±1.1)	
(t;s)	72.2~ (±0.3)	95.0° (±0.3)	148.6 (±0.5)	
(t;t)	101.5 (±0.3)	127.3 (±0.9)	128.6 (±0.9)	-94.0 ^d (±0.5)

USY: effect Si/Al ratio on activity

USY: effect Si/Al ratio on selectivity

 CBV-720 isomerization
 CBV-720 cracking
 CBV-760 isomerization
 CBV-760 cracking
 Y-zeolite isomerization
 Y-zeolite
 Somerization

cracking

standard protonation enthalpy: catalyst descriptor

same effect of acid strength on stability of reacting carbenium ion and activated complex

 $E_{\text{act, zeo}_{\text{II}}}^{\text{comp}} - E_{\text{act, zeo}_{\text{I}}}^{\text{comp}} = \Delta H_{\text{prot, zeo}_{\text{II}}}^{0} - \Delta H_{\text{prot, zeo}_{\text{I}}}^{0} = \Delta (\Delta H_{\text{prot}}^{0})_{\text{zeo}_{\text{II}} - \text{zeo}_{\text{I}}}$

standard protonation enthalpy: catalyst descriptor

framework Si/Al-ratio

- Y-zeolite: weak acid sites
- intermediate dealumination degree → strongest acid sites

Pt/H-ZSM-22

physisorption on ZSM-22

Laxmi Narasimhan et al. J.Catal., 218, 135-147 (2003)

pore mouth catalysis

product shape selectivity:

methyl shifts excluded

tertiary carbenium ions cannot be stabilized

J. A. Martens et al. Appl. Catal. 1991

shape selectivity in SEMK

- reaction network
 - exclusion of tertiary carbenium ions
 - no alkyl shifts at pore mouth sites
 - cracking to primary carbonium ions in pore mouths
- physisorption
 - various physisorption modes
 - pronounced differences between isomers
- protonation
 - depends on the number of carbon atoms inside the pore mouth

ZSM-22 parameter estimates

contribution analysis

effect of acid site concentration

effect of the strength of the acid sites

new synthesis procedure

outline

- necessary tools
 - reaction network generation
 - thermodynamic data generation
 - simulation and regression
- case 1: hydroisomerization/-cracking
 - USY-zeolite: free carbenium ion chemistry
 - ZSM-22: shape selectivity
- case 2: Fischer Tropsch synthesis
 - Fe and Co catalysts

Formation of water

Formation building blocks

 $MMMC + MH \leftrightarrow MMMCH + M$

 $MMCH_2 + MH \leftrightarrow MCH_3 + 2M$

 $MMMCH + MH \leftrightarrow MMCH_2 + 2M$

 $MMO + MH \leftrightarrow MOH + 2M$

 $MOH + MH \leftrightarrow H_2O + 2M$

Reaction network

Chain initiation

Chemisorption/dissociation $H_2 + 2M \leftrightarrow 2MH$ $CO + 2M \leftrightarrow MMCO$ $MMCO + 3M \leftrightarrow MMMC + MMO$

Chain growth and termination

- Mechanistic details still unknown
- Chain growth on surface through stepwise addition of carbon monomers
- Anderson-Schulz-Flory product distribution → chain growth probability independent of *cn*

Reaction network

Chain initiation

Chemisorption/dissociation $H_2 + 2M \leftrightarrow 2MH$ $CO + 2M \leftrightarrow MMCO$ $MMCO + 3M \leftrightarrow MMMC + MMO$

Formation building blocks

 $MMMC + MH \leftrightarrow MMMCH + M$

 $MMMCH + MH \leftrightarrow MMCH_2 + 2M$

 $MMCH_2 + MH \leftrightarrow MCH_3 + 2M$

Formation of water

 $MMO + MH \leftrightarrow MOH + 2M$

 $MOH + MH \leftrightarrow H_2O + 2M$

Chain growth and termination

Methylene insertion/de-insertion

Reaction network

Chain initiation

Chemisorption/dissociation $H_2 + 2M \leftrightarrow 2MH$ $CO + 2M \leftrightarrow MMCO$ $MMCO + 3M \leftrightarrow MMMC + MMO$

Chain growth and termination

Reductive elimination/oxidative addition

Formation building blocks

 $MMMC + MH \leftrightarrow MMMCH + M$

 $MMMCH + MH \leftrightarrow MMCH_2 + 2M$

 $MMCH_2 + MH \leftrightarrow MCH_3 + 2M$

Formation of water

 $MMO + MH \leftrightarrow MOH + 2M$

 $MOH + MH \leftrightarrow H_2O + 2M$

Reaction network

Chain initiation

Chemisorption/dissociation $H_2 + 2M \leftrightarrow 2MH$ $CO + 2M \leftrightarrow MMCO$ $MMCO + 3M \leftrightarrow MMMC + MMO$

Chain growth and termination

 β -hydride addition/elimination

Formation building blocks

 $MMMC + MH \leftrightarrow MMMCH + M$

 $MMMCH + MH \leftrightarrow MMCH_2 + 2M$

 $MMCH_2 + MH \leftrightarrow MCH_3 + 2M$

Formation of water

 $MMO + MH \leftrightarrow MOH + 2M$

 $MOH + MH \leftrightarrow H_2O + 2M$

Reaction network

Chain initiation

Chemisorption/dissociation $H_2 + 2M \leftrightarrow 2MH$ $CO + 2M \leftrightarrow MMCO$ $MMCO + 3M \leftrightarrow MMMC + MMO$

Chain growth and termination

Alkene desorption/chemisorption

Formation building blocks

 $MMMC + MH \leftrightarrow MMMCH + M$

 $MMMCH + MH \leftrightarrow MMCH_2 + 2M$

 $MMCH_2 + MH \leftrightarrow MCH_3 + 2M$

Formation of water

 $MMO + MH \leftrightarrow MOH + 2M$

 $MOH + MH \leftrightarrow H_2O + 2M$

Validation Fe and Co catalyst

- Water-Gas Shift (formate mechanism, iron oxide phase, 6 additional elementary reactions)
- Range of experimental conditions:

T (K)	H ₂ /CO	p _{tot} (bar)	N _{obs}	
523-623	2-6	6-21	90	

Lox, Ph.D. Thesis, Ghent University (1987)

- Adjustable parameters:
 - Q_C, Q_H, Q_O on iron carbide phase (3)
 - Q_H on iron oxide phase (1)
 - $E_{a,for}$ of kinetically relevant reaction families (10)

Lozano-Blanco et al., OGST – Rev. IFP, Vol. 61 (2006), No. 4 <u>Cobalt</u>

- Primary-alcohols (CO insertion mechanism, 3 additional elementary reactions)
- Range of experimental conditions:

Fiore et al., Studies in Surf. Sci. and Cat. (2004)

- Adjustable parameters:
 - Q_C, Q_H, Q_O on cobalt metallic phase (3)
 - $E_{a,for}$ of kinetically relevant reaction families (12)

Validation Fe and Co catalyst

	\widetilde{A}_{for}	<i>E_{a, for} / Q</i> (<i>kJ/mol</i>) <i>UBI/QEP Estimated UBI/QEP Estimated</i>				
Reaction family/	$(bar^{-1}s^{-1})$					
elem. reaction	or s^{-1})		Fe		Со	
$H_2 + 2M \leftrightarrow 2MH$	3.1 108	0.0	-	0.0	-	
$CO + 2M \leftrightarrow MMCO$	2.2 107	0.0	-	0.0	-	
$MMCO + 3M \leftrightarrow MMMC + MMO$	1.3 1013	139.5	56.8±0.5	155.1	52.8±6.2	
$MMMC + MH \leftrightarrow MMMCH + M$	8.8 1014	127.6	77.7±0.7	122.3	74.3±10.3	
$MMMCH + MH \leftrightarrow MMCH_2 + 2M$	5.7 1011	67.6	11.9±0.1	58.3	12.2±2.0	
$MMCH_2 + MH \leftrightarrow MCH_3 + 2M$	2.3 1011	38.1	61.9±0.5	27.2	71.9±3.1	
$\overline{MMO + MH \leftrightarrow MOH + 2M}$	1.3 1012	118.6	103.8±1.0	110.8	107.0±6.6	
$MOH + MH \leftrightarrow H_2O + 2M$	2.4 1011	78.0	86.2±0.6	51.8	91.6±24.3	
M-C	-	-	639.5±2.1	-	611.2±2.7	
M-H	-	-	249.2±0.6	-	243.3±3.2	
M-O	-	-	578.8±0.9	-	553.7±6.0	

Validation Fe and Co catalyst

	\widetilde{A}_{for}	<i>E_{a, for} / Q</i> (<i>kJ/mol</i>) <i>UBI/QEPEstimatedUBI/QEPEstimated</i>				
Reaction family/	$(bar^{-1}s^{-1})$					
elem. reaction			Fe		Со	
$MC_{n}H_{2n+1} + MMCH_{2} \leftrightarrow MC_{n+1}H_{2n+3} + 2M$	8.9 10 ⁹	8.0	44.8±0.4	0.0	43.5±2.0	
$MC_nH_{2n+1} + MH \leftrightarrow C_nH_{2n+2} + 2M$	2.1 1010	15.5	117.8±0.7	6.4	103.6±2.0	
$MC_nH_{2n+1} + M \leftrightarrow MC_nH_{2n} + MH$	1.1 1010	26.2	96.3±0.5	24.1	86.1±1.4	
$MC_nH_{2n} \leftrightarrow C_nH_{2n} + M$	1.3 1013	62.1	-	57.0	-	

 most significant changes in atomic chemisorption enthalpies and in elementary steps determining the product distribution

Results Fe - Nonisothermal

Model validation on Fe and Co

 At higher temperatures more hydrogenated products and lower molecular mass hydrocarbons

 $E_{a,mi}(45kJ / mol) \langle E_{a,\beta-e}(96kJ / mol) \langle E_{a,re}(118kJ / mol) \rangle$

conclusions

- SEMK is a versatile methodology for a wide range of processes
- catalyst descriptors account for the effect of the catalyst properties on the kinetics
 - protonation enthalpy, number of sites, physisorption
 - atomic chemisorption enthalpies
- identification of undesired and desired reaction pathways
- enhanced isomerization catalyst

acknowledgements

- Laxmi Narasimhan, Indranil Choudhury (UGent)
- Johan Martens, Pierre Jacobs (KULeuven)
- Gino Baron, Joeri Denayer (VUBrussel)
- David Farrusseng, Claude Mirodatos (IRC Lyon)
- Pierre Galtier, Karine Surla (IFP)
- IAP-program (Belgian Science Policy)
- European Commission (TOPCOMBI)
- Eurokin