Operando Computational Catalysis: Structure, Mechanism and Design of Cobalt Fischer-Tropsch catalysts

Mark Saeys

Laboratory for Chemical Technology, Ghent University, Belgium

Gas-to-Liquids

Process Gasification $CH_4 + \frac{1}{2}O_2 \rightarrow CO + 2H_2$

Fischer-Tropsch synthesis CO + 2 H_2 -> -C H_2 - + H_2 O

Air separation, product upgrading

Qatar: 14% of known gas reserves ~50,000 US\$/capita from oil and gas

Shell Pearl: 250,000 bbl/day

Shale Gas - a Game Changer

Over the last decade, U.S. shale gas production has increased 12-fold and now comprises about 25 percent of total U.S. production

Dramatic change in natural gas supply -> price collapsed

annual shale gas production

trillion cubic feet

Dramatic shift from naphtha -> ethane/propane cracking

Towler, UOP, 2012

Outline

Cobalt catalysts

High activity, selectivity, low CO₂ production Structure, coverage, active sites, mechanism?

CO coverage on Co and Pt

revPBE-VdW accurately describes CO on TM. Phase transitions and changes in site preference

Effect of high CO coverage on kinetics

Accounting for coverage brings predicted kinetic parameters close to experiment

Dramatic surface reconstruction

Nature of experimentally observed islands/new sites Origin of stability/formation

Modeling-guided Design: Stability

Co FT catalysts gradually deactivate Modeling-guided design of a promoter

High CO coverages on Co Surface Science (LEED)

SSITKA studies on

2 configurations observed under UHV conditions SSITKA measures ~0.5 ML CO coverage on particles

Bridge, Comrie, Lambert, *Surf. Sci.* **1997**; Papp, *Surf. Sci.* **1983**; Beitel et al., *JPC* **1996**, *JPCB* **1997**; den Breejen et al., *JACS* **2009**

Increasing coverage to 1/3 ML

revPBE-vdW – accurate adsorption enthalpies 1/9 ML \rightarrow 1/3 ML – attraction on Co, repulsion on Pt Attraction \rightarrow CO island formation (note: mixing entropy)

Increasing coverage to 1/3 ML

Effect of CO adsorption on Co/Pt charges CO reduces charge on neighboring Co atoms, small effect for Pt

Change in Bader charge (Co / Pt)

Natural Bond Orbitals ¹				
	Pt-1/9	Co-1/9	Pt-1/3	Co-1/3
(5 σ-d_{z2})* occupancy	0.42	0.36	0.44	0.34
C-O 2π* occupancy	0.19/0.19	0.29/0.29	0.19/0.19	0.28/0.28
			2π*	1π 2π*
NBO agrees with Blyhold	er picture		M ← 5α C	σ 0 4σ
Reduced charge->lower F	Pauli repuls	sion (5σ)	- A A A A A A A A A A A A A A A A A A A	Ιπ
Back-donation to 2π* nea	arly affecte	d		
¹ Schmidt et al., <i>J. Chem. Theory</i>	Comput. (20	12); Blyholder	(1961)	

CO coverage on terraces. Phase transition

Differential E _{ads}	-135	-46	-75
∆ G_{ads}(500 K, 7 bar)	-65	+32	+6

Adsorption entropy: -140 to -150 J/mol K Stability: $\Delta G_{ads}(T, p) = \Delta H_{ads}^{0}(T) + T\Delta S_{ads}(T) + RT \ln(p/p_0)$

Differential $E_{ads:}$ Co-1/3 ML CO + CO(g) \rightarrow Co-x ML-CO Co terraces saturated at 1/3 ML (500 K, 7 bar CO) Phase transition to 7/12 ML, not gradual increase

CO coverage on terraces. Phase transition

Low pressures: isolated $(\sqrt{3} \times \sqrt{3})R30^{\circ}$ -CO islands

Higher pressures: phase transition to $(2\sqrt{3} \times 2\sqrt{3})R30^{\circ}$ -7CO phase

Phase diagram CO on Co terraces

Two phases on Co terraces, separated by a first-order phase transition

Only two phases observed experimentally (LEED, RAIRS)

Calculations reproduce exp. phase transitions

Coverage under FT: 1/3 ML or 7/12 ML

How does CO coverage affect kinetics?

Zhou, Borgna, Saeys, J. Catal., 2013; Exp: Bridge et al., Surf. Sci. 1977; Beitel et al., JPC B 1997

Kinetic Data for FTS

Reaction order and Activation energy

Carbide mechanism

- Brady-Pettit experiments with CH₂N₂: CH₂ + CH₂ coupling¹
- C-C coupling on Co²:
 - RCH + C \rightarrow RCHC $E_a = 71 \text{ kJ/mol}$ RCH + CH2RCHCH2 $E_a = 68 \text{ kJ/mol}$
- CO dissociation on Co(0001): CO \rightarrow C + O E_a = 218 kJ/mol³ and
 - 367 kJ/mol (high coverage)⁴
- CO dissociation slow → low C or CH₂ coverage
 →coupling slow compared to hydrogenation/termination

Brady and Pettit, JACS 1980; 2. Cheng, Hu, Ellis, French, Kelly, Lok, J. Cat. 2008
 Ge, Neurock, JPC B 2006; 4. Ojeda, Nabar, Nilekar, Ishikawa, Mavrikakis, Iglesia, J. Cat. 2010

CO insertion mechanism

a. H-assisted CO activation^{1,2}

Hydrogenation lowers C-O dissociation to 82 kJ/mol¹

b. CO insertion (Pichler and Schulz, 1970) RCH₂ + CO - High calculated barrier (182 kJ/mol³)

Alternative CO insertion steps can be envisioned

Inderwildi, Jenkins, King, JPCC 2007; 2. Ojeda, Nabar, Nilekar, Ishikawa, Mavrikakis, Iglesia, J. Cat. 2010;
 Cheng, Hu, Ellis, French, Kelly, Lok, JPCC 2008

CO activation

E_a: 220 kJ/mol ΔH_r : +53 kJ/mol

Kinetically difficult due to high CO activation barrier Should be zero order in p_{H2}

H-assisted CO activation

$CO \rightarrow C + O$

E_a: 220 kJ/mol Δ H_r: +53 kJ/mol

$HCO \rightarrow CH + O$

E_a: 90 kJ/mol Δ H_r: -97 kJ/mol

$H_2CO \rightarrow CH_2 + O$

 E_a : 68 kJ/mol ΔH_r : -83 kJ/mol

Hydrogenation lowers C–O dissociation barrier Could be 0.5 to 1.0 order in p_{H2}

H-assisted CO activation: Energy Profile

First hydrogenation difficult, but faster than CO activation

¹Ojeda, Nabar, Nilekar, Ishikawa, Mavrikakis, Iglesia, J. Catal. 2010; Zhuo, Tan, Borgna, Saeys, JPCC, 2009

Effect of coupling on C–O dissociation barrier For RC=O

 $CHCO \rightarrow CHC + O$

E_a: 180 kJ/mol Δ H_r: -35 kJ/mol

 $CH_2CO \rightarrow CH_2C + O$

E_a: 95 kJ/mol ΔH_r : -72 kJ/mol E_a: 70 kJ/mol, Jenkins et al.¹ $CH_3CO \rightarrow CH_3C + O$

 $\frac{\mathbf{E}_{a}: 72 \text{ kJ/mol}}{\Delta H_{r}: -78 \text{ kJ/mol}}$

Effect of coupling on C–O dissociation barrier For RC=O

 $\mathsf{CHCO} \rightarrow \mathsf{CHC} + \mathsf{O}$

 E_a : 180 kJ/mol ΔH_r : -35 kJ/mol

For RCH=O

 $\mathsf{CHCHO} \rightarrow \mathsf{CHCH} + \mathsf{O}$

E_a: 70 kJ/mol ΔH_r: -102 kJ/mol $CH_2CO \rightarrow CH_2C + O$

 ΔH_r : -72 kJ/mol

 $CH_3CO \rightarrow CH_3C + O$

 $\frac{\mathbf{E}_{a}: 72 \text{ kJ/mol}}{\Delta H_{r}: -78 \text{ kJ/mol}}$

$CH_2CHO \rightarrow CH_2CH + O$

 E_a : 132 kJ/mol ΔH_r : -18 kJ/mol

<u>E_a: 61 kJ/mol</u> ∆H_r: -48 kJ/mol

CO insertion mechanism: C–C coupling

$CH + CO \rightarrow CHCO$

 $\frac{E_a: 96 \text{ kJ/mol}}{\Delta H_r: +51 \text{ kJ/mol}}$

$CH_2 + CO \rightarrow CH_2CO$

 $\frac{E_a: 74 \text{ kJ/mol}}{E_a: 53 \text{ kJ/mol}, \text{ Jenkins et al.}}$ $\Delta H_r: +60 \text{ kJ/mol}$

$CH_3 + CO \rightarrow CH_3CO$

 E_a : 180 kJ/mol ΔH_r : +67 kJ/mol

Zhuo, Tan, Borgna, Saeys, JPCC, 2009

CO insertion mechanism: Hydrogenation steps

2 possible C-C coupling steps 4 possible C-O scission steps

CO insertion mechanism: RCCH-O Path

2 possible C-C coupling steps 4 possible C-O scission steps

CO insertion mechanism: RCCH-O Path

Effective barrier for surface reaction: 190 kJ/mol

CO insertion mechanism: RCHCO paths

2 possible C-C coupling steps 4 possible C-O scission steps

CO insertion mechanism: **RCHCO** paths

Experimental evidence for CO insertion mechanism

Transient kinetics on Co/MgO Switch $H_2/He \rightarrow H_2/CO/Ar$ Chain growth ~ CO coverage

C-O scission in RCH₂C-O Ethanol on Co(0001) CH₃CHO* decomposes -> O at 370 K

CO* is chain growth monomer

Schweicher, Bundhoo, Kruse, JACS 2012; Weststrate et al., JPCL 2010

CO insertion mechanism: Effect of coverage

Energy profile: Decreased adsorption energies

Original TOF: 3 10⁻⁷ s⁻¹ TOF for "high coverage" cycle: 2 10⁻² s⁻¹

H Stability Diagram on $(\sqrt{3x}\sqrt{3})R30^{\circ}-CO Co(0001)$

CO destabilizes H atoms, from -121 kJ/mol on clean Co(0001) H's populate hollow sites along CO diagonal Binding energy decreases monotonically. No stable phases. Langmuir isotherm with coverage dependent BE -> $\theta_{\rm H}$ =0.3 ML

C–O dissociation on $(\sqrt{3x}\sqrt{3})R30^{\circ}$ -CO Co(0001) For RC=O

 $CH_3CO \rightarrow CH_3C + O$

<u>E_a: 72 kJ/mol</u> ∆H_r: -78 kJ/mol

C–O scission barrier increases

$CH_3CO \rightarrow CH_3C + O$

<u>E_a: 89 kJ/mol</u> ∆H_r: -56 kJ/mol

For RCH=O

CHCHO → CHCH + O

CHCHO → CHCH + O

E_a: 105 kJ/mol ΔH_r: -88 kJ/mol

C–C coupling on $(\sqrt{3}x\sqrt{3})R30^{\circ}$ -CO Co(0001)

$CH + CO \rightarrow CHCO$

E_a: 96 kJ/mol Δ H_r: +51 kJ/mol

$CH_2 + CO \rightarrow CH_2CO$

E_a: 89 kJ/mol Δ H_r: +55 kJ/mol

 $\frac{E_a: 51 \text{ kJ/mol}}{\Delta H_r: +42 \text{ kJ/mol}}$

Ref: Zhuo, Borgna, Saeys, J. Catal. 2013

CO insertion mechanism: Effect of coverage CO insertion: $RCH_x + CO \rightarrow RCH_xCO \rightarrow RCH_xC + O$

Initiation: How are CH* groups formed? Coverage: Is 0.1 ML RC* reasonable?

Zhou, Borgna, Saeys, J. Catal., 2013

Massive reconstruction under FT conditions

STM images of Co(0001) single crystal

Surface reconstruction and Co mobility

Monolayer nano-islands (~2 nm diameter) formed during FT synthesis

What drives the formation of those islands?

Wilson, de Groot, J Phys Chem, 1995

Stability of Co islands

Step creation and island formation during FT

CO-covered terraces

CO-covered nano-islands

Stability of Co islands

Step creation

Clean Terraces

Formation of a step

Step creation: +80 kJ/mol step atoms (both sides)

F4 site

B5 site

Does stronger adsorption stabilize the steps?

CO adsorption at step edges First principle CO adsorption free energy $\Delta G_{ads}(T, p_{co}) = \Delta H_{ads}(T, p_{co}) - T\Delta S_{ads}(T, p_{co}) + RT ln(p_{co}/p_{o})$

ΔG_{rxn} to create step: Desorption of CO (3 rows*1/3 ML*65 kJ/mol) + Step creation (80 kJ/mol)
- CO adsorption at B5 and F4 (100%*74 kJ/mol +100%* 71 kJ/mol)
~ 0 kJ/mol steps

Stronger CO adsorption and high CO coverage overcome step-creation energy under FT conditions

Strong carbon adsorption

Carbon stability: ΔG_{rxn} for CO(g) + H₂(g) \rightarrow [C]* + H₂O(g)

Carbon at B5 steps Carbon at fourfold steps

Surface carbide on islands

Under FT conditions, Square planar carbon binds strongly at B5 site

4n+2 Huckel rule -> σ-aromaticity

Unique stability (cf. graphite: -47 kJ/mol) due to sigma aromaticity.

Tan, Xu, Chang, Borgna, Saeys, J. Catal., 2010; Alexandrova, Saeys, in preparation

What is the C/CO coverage at B5 steps?

Carbon stability: ΔG_{rxn} for CO(g) + H₂(g) \rightarrow [C]* + H₂O(g)

Increase in C step coverage beyond 50% is not favorable Can be understood from σ -aromaticity

CO stability:

B5 50%

-75

-18

13

50% C + 100% CO

-96

-84

Square planar C increases CO stability

Stability of covered steps

50% C and 100% CO step edge coverage overcome energy penalty to create steps and stabilizes B5

Deactivation of Co catalysts during FTS 100 bbl/day bubble column pilot plant

Conditions: 230 °C, 20 bar, $H_2/CO = 2$

Saib et al., *Appl. Catal. A*, **2006** Moodley et al., *Appl. Catal. A*, **2009** Saib et al., *Catal. Today*, **2010** Slow deactivation under industrial FTS conditions

Various mechanisms have been proposed

Stability of carbon species

Stability relative to a synthesis gas reservoir (PBE functional)

 $\Delta G_{rxn}(220 \text{ °C}, 20 \text{ bar}) \text{ for } CO(g) + (x/2+1)H_2(g) \longrightarrow [CH_x]^* + H_2O(g)$ Surface carbon Surface CH Surface CH₂

Graphene

Subsurface carbon

Diffusion into steps: p4g clock reconstruction

Experimental Procedure

Catalyst preparation

- 20 wt% Co/ γ -Al₂O₃ catalyst, with 0.05 wt% Pt to improve reducibility
- Slurry impregnation of γ -Al₂O₃ with Co(NO₃)₂ and [Pt(NH₃)₄](NO₃)₂
- Calcination in air at 400 °C for 2 hrs
- Reduction at 500 °C for 12 hrs in 50 Nml/min H₂

Catalyst testing

- 1 g catalyst and 18 g SiC in fixed bed
- Particle size: 212 300 µm
- 240 °C, 20 bar, $H_2/CO = 2$
- W/F = 7.5 g_{cat} h/mol, high CO conversion

Heat and mass transfer limitations

- Different particle size no effect on rate
- Bed temperature gradient < 1°C

Experimental Validation and Characterization

Gradual deactivation over 1 week -Deactivation is attributed to resilient carbon deposits (by TEM and TPH)

- Two types of resilient carbon species (by XPS)

Ref: Tan et al., J. Catal. 2010

Stability and C 1s BE for C species

	Graphene	p4g carbide	CH at hcp	CH ₂ at hcp
Structure				
Calculated C 1s BE (eV)	284.5	283.3	283.6	284.8
Stability (kJ/mol)	-116	-98	-72	-57
	CCH ₃ at hcp	Subsurface carbon	Bulk carbide (Co ₂ C)	Carbon at B5 step
Structure				
Calculated C 1s BE (eV)	284.1 (C) 285.1 (CH ₃)	283.9	283.2	284.0
Stability (kJ/mol)	-90	-15	+16	-95

Summary: Carbon Deposition Mechanism

Computational study

Carbon diffuses *into* steps and initiate a clock reconstruction Nucleation and growth of H-terminated graphene *out of* steps Calculated C 1s energies: 283.3 eV and 284.5 eV

Experimental study

CO conversion decreases by 25 % after 1 week XPS: 2 types of carbon: "carbidic" and "poly-aromatic" Experimental XPS for C 1s: 282.9 eV and 284.6 eV

Can we improve stability of supported Co catalysts?

Ref: Tan, Xu, Chang, Borgna, Saeys, J. Catal. 2010

Effect of Boron on Stability of Ni catalysts

Xu and Saeys, J. Catal., 2006

Xu et al., J. Catal., 2009

DFT: Boron reduces carbon nucleation and growth on Ni catalysts by blocking nucleation sites

Experiments: Boron reduces the deactivation rate and carbon deposition by a factor 3, and slightly increases activity

Would this work for Co?

Stability of Boron on Co Stability of boron under FTS conditions ΔG_r for 1/2 $B_2H_6(g) \rightarrow B^* + 3/2 H_2(g)$ Step sites

Increased stability for nearest neighbors: B-B interaction

p4g clock

Boron very stable at p4g clock

Boron mimics carbon binding preference – AA?

Effect of Boron on Carbon Stability

Effect of boron on carbon diffusion from terrace to step site

$\Delta E_r = -57 \text{ kJ/mol}$

∆E_r = +109 kJ/mol

Experimental Procedure

Catalyst preparation

- 20 wt% Co/γ-Al₂O₃, 0.05 wt% Pt catalyst promoted with boron
- Two step impregnation of γ -Al₂O₃ with (i)Co(NO₃)₂ and (ii)H₃BO₃
- Calcination in air at 400 °C for 2 hrs
- Reduction at 500 °C for 12 hrs in 50 Nml/min H₂

Catalyst testing

- 1 g catalyst, 18 g SiC in fixed bed reactor
- Particle size: 212 300 µm
- 240 °C, 20 bar, H₂/CO = 2
- W/F = 7.5 g_{cat} h/mol, high CO conversion

Effect of Boron on CO conversion

0.5 wt% B reduces deactivation rate by factor 6

CO conversion maintained at 90%

HC selectivity relatively unaffected

Ref: Tan, Chang, Borgna, Saeys, J. Catal. (2011)

Post-reaction characterization X-ray Photoelectron Spectroscopy

Promotion with 0.5 wt% B

Reduces XPS intensity Peak at 282.9 eV undetectable No graphite in HR-TEM

Temperature Programmed Hydrogenation

Promotion with 0.5 wt% B Total amount of CH₄ reduced Less resilient carbon formed

Characterization: Formation of Cobalt Boride

B 1s X-ray Photoelectron Spectra

Boron oxide Oxide Al₂O₃ Peak at 191.0 eV boron oxide Peak at 188.1 eV cobalt boride 187.8 eV from DFT-PBE

10% of boron oxide reduced Only B atoms interacting with Co particles can be reduced

Conclusions

Modeling realistic coverages (*Operando*) affects kinetics and brings predicted kinetic parameters close to experiment

CO insertion mechanism via RCH + CO is a viable mechanism on Co terraces, consistent with kinetic data

Unique stability of C/CO at B5 site overcomes step creation penalty and drives formation of Co islands of specific size

Boron mimics the binding characteristics of carbon, is stable on Co, and can selectively block nucleation sites.

Funding: Shell Global Solutions, NUS, A-Star Acknowledgment: Anastassia Alexandrova (UCLA), Kasun Gunasooriya, Arghya Banerjee, Mingkun Zhuo, Adrian Tan

Openings at Laboratory for Chemical Technology/ Ghent University, Belgium

Odysseus program Design of Selective Catalytic Processes mark.saeys@ugent.be

