Gas-phase deposition (ALD) for highly efficient preparation of catalysts

J. Ruud van Ommen

Product & Process Engineering (<u>www.ChemE.nl/ppe</u>), ChemE Delft University of Technology, the Netherlands j.r.vanommen@tudelft.nl

erc

Challenge the future

Introduction: ALD on fluidized powders

Efficiency of precursor usage

Batch and continuous reactor technology

Application examples

Number of cycles determines layer thickness

Chemistry of ALD

Film growth / island growth on (nano)particles

 Al_2O_3 film ~ 3 nm

Pt clusters ~ 2 nm

Wide range of coatings possible 'Periodic table of ALD'

Miikkulainen et al., J. Appl. Phys. 113 (2013) 021301

Status Dec. 2010

						l	ne pure		enthas	Deen	grown						
1	-	сотр	ounds	with O					compo	unds w	<i>i</i> ith F						18
¹ H	2	2 compounds with N				~ Z	Z other compounds					17	2 He				
3 Li	4 Be	comp	ounds	with S	<mark> </mark>				compo	unds w	ith Te	⁵ B	6 C	7 N	8 O	9 F	10 Ne
11	12						com	pound	s with \$	Se		13	14	15	16	17	18
Na	Mg			_		_	•		10		10	Al	Si	P	S	CI	Ar
		3	4	5	6	1	8	9	10	11	12						
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Aq	Cd	In	Sn	Sb	Те		Xe
										U							
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La*	Hf	Та	W	Re	Os	lr	Pt	Au	Hq	ΤI	Pb	Bi	Po	At	Rn
											Ŭ					1	
87	88	89	104	105	106	107	108	109	110	111	112						
Fr	Ra	Ac**	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn						
					Ĭ					Ŭ							

Mostly applied to flat substrates (semiconductor industry)

Fluidization of nanoparticles

Yakovlev, Malygin et al., J Appl Chem USSR 52 (1979) 959Hakim, Weimer et al., Chem. Vap. Dep. 11 (2005) 420(1 mbar)Beetstra, van Ommen et al., Chem. Vap. Dep. 15 (2009) 227(1 bar)

Introduction: ALD on fluidized powders

Efficiency of precursor usage

Batch and continuous reactor technology

Application examples

Packed particle bed not efficient!

Longrie et al., J. Vac. Sci. Technol. A 32 (2014) 010802

Amount of waste produced

 $E - factor = \frac{mass of waste}{mass of desired product}$

Industry segment	Annual product throughput [log kg]	E-factor [-]	Typical amount of waste [kg]
Oil refining	8-10	~0.1	1E8
Bulk chemicals	7–9	<1–5	2E8
Fine chemicals	5–7	5–50	1E7
Pharmaceuticals	4–6	25->100	5E6
Nanomaterials	2–3	100–100,000	1E6

TUDelft Sheldon, Green Chem (2007); Eckelman, J. Ind. Ecol (2008)

Amount of waste produced

F _ factor _	mass of waste				
L = 1actor =	mass of desired product				

Industry segment	Annual product throughput [log kg]	E-factor [-]	Typical amount of waste [kg]
Oil refining	8-10	~0.1	1E8
Bulk chemicals	7–9	<1–5	2E8
Fine chemicals	5–7	5–50	1E7
Pharmaceuticals	4–6	25->100	5E6
Nanomaterials	2–3	100–100,000	1E6
Particle ALD	?	1-10	

TUDelft Goulas & van Ommen, KONA Powder and Particle J. 31 (2014) 234

Modelling precursor usage

Objective: assessing the precursor utilization efficiency

Conservative assumption: CSTR + PFR; re-agglomeration not considered

TUDelft

Paper in preparation: Grillo et al.

Modelling precursor usage

[2] Travis et al., Chem. Vap. Deposition 19 (2013) 1521-3862

Simulation of residual gas analysis 1 bar TMA half-reaction 1.5 CH_4 1 **Cumulative CH**

-CH $_3$ surface coverage inside NP agglomerate

Agglomerate diameter: 300 µm

TMA concentration in the bubble phase

1 bar

TUDelft

Effect of operating conditions on efficiency

Bed height to obtain ~100% efficiency

ALD on nanoporous micron-sized particles

120 μ m nanoporous γ -alumina particles, at 1 bar

TUDelft

Efficiency of precursor use: exp. results **Deposition of Pt on TiO₂ nanoparticles** ·CH₃ 5 H₃C-Pt-CH₃ CH₃ **Pt loading (% wt.) Amount of Pt** fed to system 10 nm **Amount of Pt** in product from ICP-OES 0 1 3 0 2 4 **ALD cycles**

TUDelft

Goulas & van Ommen , J. Mat. Chem. A 1 (2013) 4647

Summary modelling results

ALD on NPs in FBRs:

- 1 bar: 100% efficiency possible, but bubbles can reduce it
- 1 mbar: 100% efficiency in most cases

ALD on nanoporous micron-size particles:

 1 bar and 1 mbar: sharp reaction fronts, lower efficiency at lab-scale, but still high (>90%)

Results are in qualitative agreement with exp. findings

Paper in preparation: Grillo et al.

Introduction: ALD on fluidized powders

Efficiency of precursor usage

Batch and continuous reactor technology

Application examples

Exhaust gas neutralization system

ALD reactor

TUDelft

Deposition of Pt on TiO₂ nanoparticles

Experimental conditions

250 mg TiO₂ P25 (Evonik), diam.: 25 nm

Reactants: MeCpPtMe₃ & O₃

T = 250°C; p = 1bar

column diameter: 10 mm

gas flow: 0.20 L/min / 4.2 cm/s

typical pulse time: 1-10 min

ALD on powders

- simple & robust
- mild conditions
- nm to µm particles
- many different materials
- Iow waste footprint
- scalable

Different reactor technologies possible:

A continuous reactor for ALD on particles

TUDe

Patent Pending: WO2010/100235

Pneumatic reactor: homogeneous product?

1 ALD cycle

Efficiency of precursor usage

Batch and continuous reactor technology

Application examples

Photocatalysis: Pt on TiO₂ nanoparticles

Photocatalytic decomposition of acid blue 9

TUDelft

Methylcyclohexane oxidation: Pt/TiO_2 vs Au/TiO₂

Photocatalysis with Pt/P25 (ALD) vs Au/P25 (deposition-precipitation) Time evolution of the peak height of the ketone (1710 cm⁻¹) vibration

Suzuki-Miyaura c-c cross-coupling: Pd/Al₂O₃

ALD of Pd with $Pd(hfac)_2$ and HCHO on micron-sized, nanoporous Al_2O_3 particles

Suzuki-Miyaura c-c cross-coupling: Pd/Al_2O_3

Opportunities for ALD in catalysis

We will explore these opportunities partly in our research group, and partly via a spin-off company (as of 1/1/2015)

TUDelft

Li-ion batteries: reduced charging time & aging

Sub-micron particles: faster charging, but increased aging Ultrathin coating needed to improve the lifetime 120 g powder, coated at 160°C & 1 bar

Al₂O₃ film on LiMnO₂ particles

Beetstra, Lafont, Nijenhuis, Kelder, van Ommen; Chem. Vap. Dep. 15 (2009) 227

TUDelft

with Guerra, Valdesueiro, Chandramathi Sukumaran, Houtepen

Conclusions

- Coating of fluidized particles (10 nm-1mm) with ALD at 1 bar
- Many different core and shell materials can be used
- Both continuous films & cluster growth
- Highly efficient use of resources
- Fluidized bed: scalable process
- Continuous process is also feasible
- Wide range of possibilities in catalysis, but also for other applications
- We will explore these via academic research + spin-off

Thanks to all co-workers & students who contributed!

