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CATALYSTS TESTING

oCatalysts development:

o 1. Screening phase

o 2. Kinetic study

o Laboratory tests on pellets (⁓mm)

o Same as in industrial practice

Context
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CATALYSTS TESTING

oCatalysts development:

o 1. Screening phase

o 2. Kinetic study

o Laboratory tests on pellets (⁓mm)

o Same as in industrial practice

o Two types of lab reactors:
o Stirred tank reactors

o Packed beds

Stirred Packed bed

Context
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TESTING REACTORS IN HETEROGENEOUS CATALYSIS

[1] Moulijn J. et al. (2016), Catalysis Today Vol. 259

[1]

o Trend for testing reactors: miniaturization

o Advantages: cheaper & safer operation

o Downscaling criterion: keep industrial contact times

o Lower limit: catalyst size → Packed bed millireactors

Context
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TESTING REACTORS IN HETEROGENEOUS CATALYSIS

o Trend for testing reactors: miniaturization

o Advantages: cheaper & safer operation

o Downscaling criterion: keep industrial contact times

o Lower limit: catalyst size → Packed bed millireactors

o Easier implementation of parallel reactor systems

oHigh Throughput Experimentation (HTE): 

Experimentation with packed bed millireactors in parallel
o Currently used for screening phase

Scheme of an Avantium FLOWRENCE
HTE unit

Question: can we use HTE for kinetics?

Context
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PACKED BED MILLIREACTORS

oPacked bed millireactors: packed beds with Dr < 1 cm

oPacking governed by reactor/particle diameter ratio:

𝜹 =
𝑫𝒓

𝒅𝒑
o Typical values: 1 < δ < 10

o Two main configurations:
o Low δ: structured beds

o Large δ: random beds

Ψ=1.93 Ψ=0.64Ψ=1.93 Ψ=0.64Structured “Random”

Context
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PACKED BED MILLIREACTORS

oRisks related to the use of packed bed millireactors
o1. Lower superficial velocities (u) because of shorter lengths (L)

o u = L / contact time

o Effect on fluid dispersion?

o External mass transfer ∝ u0.5

[2] Ranz, W. E. and Marshall, W. R. (1952), Chemical Engineering Progress, Vol. 48

[2]

Context
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oRisks related to the use of packed bed millireactors

o2. Channeling near walls→ Fluid dispersion
o Different residence times → Different conversions

o Mean conversion ≠ Conversion of equal residence times

o Literature recommends δ > 15     

PACKED BED MILLIREACTORS

Shorter 

residence 

time

Longer 

residence 

time

[3] Delgado, J. M. P. Q. (2006), Heat Mass Transfer Vol. 42, No.4

x-z plan y-z plan

δ=1.55

[3]

Context
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oRisks related to the use of packed bed millireactors

o2. Channeling near walls→ Fluid dispersion
o Different residence times → Different conversions

o Mean conversion ≠ Conversion of equal residence times

o Literature recommends δ > 15

o Pe number as indicator 

PACKED BED MILLIREACTORS

[3]

𝑷𝒆 =
𝒖⸱𝑳

𝜺⸱𝑫𝒂𝒙

[3] Delgado, J. M. P. Q. (2006), Heat Mass Transfer Vol. 42, No.4

Context
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oRisks related to the use of packed bed millireactors

o2. Channeling near walls→ Fluid dispersion
o Different residence times → Different conversions

o Mean conversion ≠ Conversion of equal residence times

o Literature recommends δ > 15

o Pe number as indicator 

o Mears-Gierman criterion

PACKED BED MILLIREACTORS

[3] Delgado, J. M. P. Q. (2006), Heat Mass Transfer Vol. 42, No.4

𝑷𝒆𝒎𝒊𝒏 > 𝟖 ∙ 𝒏𝒓 ∙ 𝒍𝒏
𝟏

𝟏−𝑿

[4]

[4] Gierman (1988), Applied catalysis Vol.43

[3]

Conversion Pemin* Application

example

50% 5.5 Reforming

70% 9.6

90% 18.4 Hydrotreatings

95% 24

99% 36.8

99.99% 73.7 HDS

*first-order reaction assumed

Context
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PACKED BED MILLIREACTORS

o State of the art on G/S packed bed millireactors (Dr < 1 cm, δ<10):

Parameter Covered area Missing

δ 1.125<δ<1.76 Other δ values

Porosity filler 

effect

1 CFD study + 

Hypothetical ideal 

G/S reaction 

Experimental study + 

size and shape effect 

+ other reactions

[5] Šolcova and Schneider (2004), Chemical Engineering Science Vol. 59
[6] Fernengel et al. (2019), Chemical Engineering Journal Vol.373

[5, 6] 

[6] 

δ = Dr/dp

Context
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PRESENTATION OUTLINE

oScope and strategy of the study

oHydrodynamic study

oReactive experiments

oConclusions and perspectives

SCOPE AND STRATEGY HYDRODYNAMICS REACTIVE TESTS CONCLUSIONS/PERSPECTIVES
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SCOPE OF THE STUDY

oPacked bed millireactors

o Dr < 8 mm, L = 9-25 cm

o 1 < δ < 8

o Particles: cylinders, spheres (mm)

o With and without fine powder as porosity filler

Dr

dp
L

SCOPE AND STRATEGY HYDRODYNAMICS REACTIVE TESTS CONCLUSIONS/PERSPECTIVES

Silicon Carbide

(SiC)

ZirBlast®

60-70% ZrO2

28-33% SiO2

<10% Al2O3

Powders

Irregularly shaped

Spherical
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SCOPE OF THE STUDY

oPacked bed millireactors

o Dr < 8 mm, L = 9-25 cm

o 1 < δ < 8

o Particles: cylinders, spheres (mm)

o With and without fine powder as porosity filler

o1. Fluid dispersion?

o2. Can mass transfer be improved?

SCOPE AND STRATEGY HYDRODYNAMICS REACTIVE TESTS CONCLUSIONS/PERSPECTIVES

Dr

dp
L

Powders

Silicon Carbide

(SiC)

ZirBlast®

60-70% ZrO2

28-33% SiO2

<10% Al2O3

Irregularly shaped

Spherical
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STRATEGY OF THE STUDY

o1. Hydrodynamic study: RTD experiments + CFD 

simulations

o Target: characterize fluid dispersion at different 

operating conditions

SCOPE AND STRATEGY HYDRODYNAMICS REACTIVE TESTS CONCLUSIONS/PERSPECTIVES
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STRATEGY OF THE STUDY

o2. Reactive tests 

o Target: explore mass transfer changes induced by 
porosity filler presence

SCOPE AND STRATEGY HYDRODYNAMICS REACTIVE TESTS CONCLUSIONS/PERSPECTIVES

+ =
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PRESENTATION OUTLINE

oScope and strategy of the study

oHydrodynamic study

oReactive experiments

oGeneral conclusions and perspectives

SCOPE AND STRATEGY HYDRODYNAMICS REACTIVE TESTS CONCLUSIONS/PERSPECTIVES
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oRTD experiments:
oN2-He step change

o Mass spectrometer for measurements
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HYDRODYNAMIC STUDY: METHODS

SCOPE AND STRATEGY HYDRODYNAMICS REACTIVE TESTS CONCLUSIONS/PERSPECTIVES
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HYDRODYNAMIC STUDY: METHODS

oRTD experiments:
oN2-He step change

o Mass spectrometer for measurements

oPe number from axial dispersion model

SCOPE AND STRATEGY HYDRODYNAMICS REACTIVE TESTS CONCLUSIONS/PERSPECTIVES
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HYDRODYNAMIC STUDY: METHODS

oCFD: simulation workflow

o1. Grains3D DEM code to obtain the packing

SCOPE AND STRATEGY HYDRODYNAMICS REACTIVE TESTS CONCLUSIONS/PERSPECTIVES
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HYDRODYNAMIC STUDY: METHODS

oCFD: simulation workflow

o1. Grains3D DEM code to obtain the packing

o2. blockMesh and snappyHexMesh OpenFOAM® 
utilities to create the mesh

SCOPE AND STRATEGY HYDRODYNAMICS REACTIVE TESTS CONCLUSIONS/PERSPECTIVES



23

N E W    E N E R G I E S

23 |   ©  2 0 2 0  I F P E N
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HYDRODYNAMIC STUDY: METHODS

oCFD: simulation workflow

o1. Grains3D DEM code to obtain the packing

o2. blockMesh and snappyHexMesh OpenFOAM® 
utilities to create the mesh

o3. SimpleFoam OpenFOAM® solver computes the flow
o Steady state transport equations for M1 and M2

𝑷𝒆 = 𝟐
𝑴𝟏,𝒐𝒖𝒕 −𝑴𝟏,𝒊𝒏

𝟐

𝑴𝟐,𝒐𝒖𝒕 −𝑴𝟏,𝒐𝒖𝒕
𝟐 − 𝑴𝟐,𝒊𝒏 −𝑴𝟏,𝒊𝒏

𝟐

[7] Liu and Tilton (2010), AIChe Journal Vol. 56 No.10

[7]

SCOPE AND STRATEGY HYDRODYNAMICS REACTIVE TESTS CONCLUSIONS/PERSPECTIVES

𝛁. 𝐯𝑴𝒏 = 𝛁. 𝑫𝒎𝛁𝑴𝒏 + 𝒏𝑴𝒏−𝟏, n>11.

2.

GenerationDiffusionConvection
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HYDRODYNAMIC STUDY: RESULTS

oComplex behavior of Pe number with δ
o Spheres 

o Higher values for δ > 3 → Random beds

SPHERES

L=18.2 cm

EXPLORED MORE IN DETAIL by CFD

RTD DATA

SCOPE AND STRATEGY HYDRODYNAMICS REACTIVE TESTS CONCLUSIONS/PERSPECTIVES

[8]

[8] Petrazzuoli et al. (2021), Chemical Engineering Science Vol.231
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HYDRODYNAMIC STUDY: RESULTS

oCFD results: Pe number different flow patterns
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SCOPE AND STRATEGY HYDRODYNAMICS REACTIVE TESTS CONCLUSIONS/PERSPECTIVES

[9]

[9] Petrazzuoli et al., article submitted to Chemical Engineering Science
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IsoM1 

curves

[9]

[9] Petrazzuoli et al., article submitted to Chemical Engineering Science
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HYDRODYNAMIC STUDY: RESULTS

oCFD results: Pe number different flow patterns
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[9]

[9] Petrazzuoli et al., article submitted to Chemical Engineering Science
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HYDRODYNAMIC STUDY: RESULTS

oComplex behavior of Pe number with δ
o Spheres 

o Higher values for δ > 3 → Random beds

o Pe number influenced by preferential passages

SCOPE AND STRATEGY HYDRODYNAMICS REACTIVE TESTS CONCLUSIONS/PERSPECTIVES



30

N E W    E N E R G I E S

30 |   ©  2 0 2 0  I F P E N

0

20

40

60

80

100

P
e 

n
u

m
b

er

HYDRODYNAMIC STUDY: RESULTS

oComplex behavior of Pe number with δ

o Cylinders
o Higher values for random beds

L=18.2 cm

CYLINDERS

Aligned

Dr/dcyl=1.12

Aligned

Dr/dcyl=1.55

Random

u=0.014 m/s

RTD DATA

SCOPE AND STRATEGY HYDRODYNAMICS REACTIVE TESTS CONCLUSIONS/PERSPECTIVES
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HYDRODYNAMIC STUDY: RESULTS

oPositive effect of porosity fillers
o Lower reactor porosity→ Higher Pe number

o Smaller powders preferred

o Spherical powders fill better the porosity

ε

P
e 

n
u

m
b

er
High Pe numbers without porosity filler

SCOPE AND STRATEGY HYDRODYNAMICS REACTIVE TESTS CONCLUSIONS/PERSPECTIVES
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PRESENTATION OUTLINE

oScope and strategy of the study

oHydrodynamic study

oReactive experiments

oConclusions and perspectives

SCOPE AND STRATEGY HYDRODYNAMICS REACTIVE TESTS CONCLUSIONS/PERSPECTIVES



33

N E W    E N E R G I E S

33 |   ©  2 0 2 0  I F P E N

REACTIVE TESTS: UNIT PRESENTATION

o Tests performed on an Avantium FLOWRENCE HTE unit:

o8 parallel reactors

o Same inlet gas and liquid flow

o Same inlet pressure

oGC analysis per single reactor

Block A Block B

Glass socks

ZirBlast

Isothermal 
length (9 cm)

ZirBlast

He+H2+N2

Hydrocarbons

Block A Block B

Glass socks

ZirBlast

Isothermal 
length (9 cm)

ZirBlast

He+H2+N2

Hydrocarbons

SCOPE AND STRATEGY HYDRODYNAMICS REACTIVE TESTS CONCLUSIONS/PERSPECTIVES

TA TB
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REACTIVE TESTS: METHODS

SCOPE AND STRATEGY HYDRODYNAMICS REACTIVE TESTS CONCLUSIONS/PERSPECTIVES

o2 reactions tested:

on-heptane reforming, low ΔH 

isomerization

hydrocracking

dehydrocyclization cyclization

dehydrogenation

Explored operating conditions:

P=10 barg

470 < T < 515 °C 

Contact times: 0.2-0.067 gcat⸱h/gHC
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REACTIVE TESTS: METHODS

SCOPE AND STRATEGY HYDRODYNAMICS REACTIVE TESTS CONCLUSIONS/PERSPECTIVES

o2 reactions tested:

on-heptane reforming, low ΔH 

omethylcylohexane dehydrogenation, ΔH = 204 kJ/mol

methylcyclohexane toluene

Explored operating conditions:

P=10 barg

330 < T < 350 °C 

Contact times: 0.15-0.057 gcat⸱h/gHC
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oDifferent reactor diameters tested

o2 to 4 mm

oDifferent catalyst particles tested

o Extrudate cylinders and spheres

REACTIVE TESTS: METHODS

SCOPE AND STRATEGY HYDRODYNAMICS REACTIVE TESTS CONCLUSIONS/PERSPECTIVES
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oDifferent porosity fillers tested

o Size and shape

REACTIVE TESTS: METHODS

SCOPE AND STRATEGY HYDRODYNAMICS REACTIVE TESTS CONCLUSIONS/PERSPECTIVES

SiC 60 µm
150-

200 µm 

300-

400 µm 

ZirBlast® 60 µm
150-

200 µm 

300-

400 µm 
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REACTIVE TESTS: RESULTS

oPorosity filler change mass transfer properties→ Effect on conversions?
o Gain in conversion: conversion with porosity filler / conversion without porosity filler

SCOPE AND STRATEGY HYDRODYNAMICS REACTIVE TESTS CONCLUSIONS/PERSPECTIVES
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MCH dehydrogenation, Dr=2 mm

catalyst extrudates, P=10 barg

nC7 reforming, Dr= 3 mm

catalyst extrudates, P=10 barg

Higher WHSV → Higher u → Higher effect
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REACTIVE TESTS: RESULTS

oPorosity filler change mass transfer properties→ Effect on conversions?
o Gain in conversion: conversion with porosity filler / conversion without porosity filler

SCOPE AND STRATEGY HYDRODYNAMICS REACTIVE TESTS CONCLUSIONS/PERSPECTIVES

Porosity 

filler effect
Reason Best shape Best size

Packing 

repeatability
Recommendation

Slightly 

positive

+ mass 

transfer

Slightly

60, 150-200 

µm
Good

Use the largest 

powder that fills the 

porosity best

SUMMARY OF THE RESULTS

Higher gas interstitial velocity
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PRESENTATION OUTLINE

oScope and strategy of the study

oHydrodynamic study

oReactive experiments

oConclusions and perspectives

SCOPE AND STRATEGY HYDRODYNAMICS REACTIVE TESTS CONCLUSIONS/PERSPECTIVES
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GENERAL CONCLUSIONS AND PERSPECTIVES

o Main conclusions:
o Fluid dispersion:

o Low fluid dispersion

o More fluid dispersion when large passages 
are present (δ ≈ 1.7, 2.6, 3.4)

o Mass transfer slightly improved by porosity
fillers

o Further conclusion:
o DEM-CFD workflow accurate and fast 

SCOPE AND STRATEGY HYDRODYNAMICS REACTIVE TESTS CONCLUSIONS/PERSPECTIVES

o1. Fluid dispersion?

o2. Can mass transfer be improved?

Packed bed millireactors

Questions:
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o Recommendations:
o Millireactors suitable for G/S applications

o Geometries with large preferential passages 
(or holes) should be avoided

o Increase bed length as much as possible

o Use porosity fillers if possible
o The largest size that correctly fills the 

porosity

GENERAL CONCLUSIONS AND PERSPECTIVES

SCOPE AND STRATEGY HYDRODYNAMICS REACTIVE TESTS CONCLUSIONS/PERSPECTIVES

o Main conclusions:
o Fluid dispersion:

o Low fluid dispersion

o More fluid dispersion when large passages 
are present (δ ≈ 1.7, 2.6, 3.4)

o Mass transfer slightly improved by porosity
fillers

o Other conclusions:
o DEM-CFD workflow accurate and fast 
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o Perspectives:

o CFD with porosity filler
o Explore size and shape effect

o DEM costly→ Geometrical methods

o Estimate mass transfer coefficients
o Experimentally and through CFD

o Study polydispered packings hydrodynamics

GENERAL CONCLUSIONS AND PERSPECTIVES

SCOPE AND STRATEGY HYDRODYNAMICS REACTIVE TESTS CONCLUSIONS/PERSPECTIVES
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