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to produce a satisfactory model it is not
necessary that it be exactly right...
(no model or procedure is perfect)
but rather that it not be grossly wrong in

the context in which it is to be used...

By statistical inference we mean inference about the
state of nature made in terms of probability; usually
the state of natureisdescribed by the value of one or
mor e parameters. Such a parameter 0 could, for
instance, be therate constant of a chemical reaction
or thethermal conductivity of a certain alloy. Thusa
solution to the inference problem is supplied by a
posterior distribution p(0ly) from thedatay given a
relevant prior state of knowledge represented by p(0)



Consider the reaction and data below. Estimate the uncertainty in the

calculation of the catalyst mass required for production of B.
Design experiments to improve the estimation of k, and k.
What can you do about k, ?
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Ink, = -1.545161£0.11
Ink, = —0.711056 +0.1394
Ink, = —4.164588 +3.501
Ink, = -20.0



About the basics

 Adequacy of the Expectation Function (Model)
— Lack-of-fit and Discrimination
 Constancy of error variance from one observation to another
— Transformation of Data
 Normality of the distributions of the observations
— Exponential Power Distributions
 Independence of these distributions
— Violation leads to dramatic consequences
— Relaxation leads to time series and dynamic models
 Lack of “aberrant” observations
— Anomalies in the experimental setup

— Observations generated from alternative models with large bias
or very large variance



Error and Expectation
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Prediction and Uncertainty
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anmple: Differential reactow

2A=B+C

k1 ( Pa ~ pE;<pC ]

1+ K, paPe +Kg Ps +Ke Pe

y, =T




— .
—

mplicit Expectat

Error and Expectation
. 9U _ :
E(t,u,e)E-F(t,X,EILD (I u),e)

Yu= E(yu)+8u
E(yu):n(fwuu;e) ay, =al7 ou N on

06, oudf, 04,
=N, (00%l,)

Prediction and Uncertainty
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*» Algebraic Models

 Initial Value Models

01* Boundary Value Models
» Initial-Boundary Value
Models

% Models with the 3"
Dimension
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« Newton’s Method
— Adaptive strategy
— Non-Negativity Conditions
— Convergence form poor guess
— Homotopy technigues
o Sensitivity Analysis
— un-normalized coefficients
— semi-normalized
— Critical for the estimation




nitial Value
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Fixed Leading Coefficient
— Adaptive Newton’s Method
— Non-Negativity Conditions

Parametric Continuation

Sensitivity Analysis
— Un-normalized coefficients
— Semi-normalized coefficients
— Critical for estimation

Explicit discontinuities
Implicit discontinuities



Sounaary Value Models

*Discretization of the spatial derivatives
—Finite Differences (uniform and non-uniform grids)
—Global Orthogonal Collocation
—Orthogonal Collocation on Finite Elements



nitral-Bounadary Value Models

*Discretization of the spatial derivatives
—Finite Differences (uniform and non-uniform grids)
—Global Orthogonal Collocation

—Orthogonal Collocation on Finite Elements

*Fixed Leading Coefficient within the Method of Lines



Viodels with the 3 Dimension

Discretization of the 3rd
dimension

Global Orthogonal Collocation

Orthogonal Collocation on Finite
Elements

Simultaneous solution of the 3rd
dimension residuals with the
parent equations




® Estimation

e Discrimination

e Criticism & Design
e Prediction

* Uncertainty




Statistical Inference

Sampling Theory

Inferences are made in terms of the sampling distributions of statistics,
which are functions of the observations.The probabilities refer to the
frequency with which different values of statistics (from sets of data
other than those that have actually happened) could occur for some
fixed but unknown values of the parameters. (Significance tests,
confidence intervals, Neyman-Pearson theory of Hypothesis testing
comprise the Sampling Theory approach.)

Bayes’ Theorem

Inferences are based on probabilities associated with different values
of parameters which could have given rise to the fixed set of data which
has actually occurred. In calculating these probabilities we must make
assumptions about prior distributions that express a state of knowledge
or ignorance about the parameters.



Model Building

Inference
Postulated _ Conditional
Model Analysis

 Inference [Sponsor]

Inference deals with the estimation of the parameters of the postulated
model.

. Cr|t|C|sm [Crltlc]




SINGLE RESPONSE

MECHANISTIC MODELS




Bayes’ Theorem

The probability distribution for 8 and @ posterior to the data
y is proportional to the product of the distribution for 6 and
O prior to the data and the likelihood for 6 and @ given Y.




The critical assumptions

 The observations are independently distributed
= Very sensitive assumption

« Each observation has the same variance g2

= Equal weight for each observation

= Data transformation (ex. Log, Inverse, Square Root)
 The observations are Normally distributed

= Centtal limit theorem

—= Data are Spherically Normal



Derivation ofi the Posterior Probability:

Distribution p(6,0]y)

The posterior p(0,0ly) distribution
function contains everything we
know about the parameters 0

Our objective is to maximize the
posterior probability function

This is done by minimizing S(0)
[also know as the sum of squares
of residuals]

Once the parameter 0 is obtained
we obtain the marginal posterior
distribution for 0 by integrating out
the nuisance parameter o




Minimization of S(0): Explicit Models

MINIMIZATION ALGORITHMS

GregPlus in Athena uses the
Newton or the Gauss-Newton
Algorithm

The Marquardt and Levenberg
Algorithm

Sequential Quadratic Programming
[SQP] Algorithms
a Popular in Simulation Software

General Reduced Gradient [GRG]
Algorithms

o Excel Implementation




Minimization of S(0): Implicit Models

@ END OF MINIMIZATION

A set of estimated parameters 0,
a set of constrained parameters,

and a set of undetermined
parameters

For the set of the estimated
parameters 6 we may obtain the
marginal posterior distribution
for @ by integrating out the
nuisance parameter o




Marginal Posterior Distribution

1 _ AT . n —%(\Hk)
1+(e—e) X x(e—e)}
Vs’

s’ =%S(é) v=n-k

p(B|y) is the multivariate t distribution (1954)
p(8ly) =1, (8,5 (x7x)" )




Marginal Posterior Distribution for 6




Covariance and variance of parameters.
HPD intervals with probability content 1-a

A useful choice is a=0.05,

which gives 95% probability
HPD interval for each of the
estimated set of parameters




Marginal posterior distribution for
parameter transformations




Goodness-of-Fit Analysis

Experimental and Lack-of-fit Error

JExtreme Cases

Lack-of-Fit=0
dPerfect Model

dLack-of-Fit=S(0)
dWorst Model




Lack-of-Fit Analysis
How Good Is my Model?




Discrimination amongst rival models




Optimal Experimental Design

for Parameter Estimation

Optimal Design Basis

Minimization of the
ellipsoid volume

Minimization of the
trace of the inverse of
the Hessian Matrix

A useful choice is a=0.05, which gives 95% probability
HPD region for the estimated set of parameters



Optimal Experimental Design
for Model Discrimination




Optimal Experimental Design
for Model Discrimination




MULTI-RESPONSE

MECHANISTIC MODELS




Bayes’ Theorem

The probability distribution for 8 and 2 posterior to the data
y is proportional to the product of the distribution for 6 and
2 prior to the data and the likelihood for 8 and 2 given y.




Derivation ofi the Posterior Probability:

Distribution p(6,Z]y)

TASKS AT HAND

» Theposterior p(6,Z|y) distribution
function contains everything we
know about the parameters 9

» Our objectiveisto maximizethe
posterior probability function

» Thisisdone by using the
conditional maximum-density
estimate for Z at each value of 0.

n+m-+l

p6,zZ|y)[X 2 exp(— %t r [Z '1U(9)]J



Derivation ofi the Posterior Probability:

Distribution p(6,Z]y)

TASKS AT HAND

* Oncethe parameter Z isobtained
we obtain the marginal posterior
distribution for 6.

« Wethen proceed to maximizethe
posterior density for the model
parameters

« Thisisaccomplished by
minimizing the logarithm of the
deter minant of the moment matrix
of theresiduals, i.e., the function

S(6).




Minimization ofi the Objective Function




Marginal Posterior Distribution

We expand t pj ective function
0% Inu ()
0000"

s(e)=s(8)+(e-8) A(e-8) A:%(m+n+l) »
We al so have the definition
S(O)=-2Inp(O|y)+cC

Combi ni ng the two equations

0(8]y) 0 exp[— %(e— é)TA(G— é)}

p(@|y) is the multivariate Normal distribution
p(@|y)=N{6.A"}

p(@, |y) is the univariate Normal distribution
p(8, |y) = N{6,.A;]




Covariance and variance of parameters.
HPD intervals with probability content 1-a

A useful choice is a=0.05,

which gives 95% probability
HPD interval for each of the
estimated set of parameters




Marginal posterior distribution for
parameter transformations




Lack-of-Fit Analysis
How Good Is my Model?

Strict levels of acceptance or rejection are not advocated




Discrimination amongst rival models
Multiresponse mechanistic models




Optimal Experimental Design

for Parameter Estimation

A useful choice is a=0.05, which gives 95% probability
HPD region for the estimated set of parameters

Optimal Design Basis

Minimization of the ellipsoid
volume

Minimization of the trace of the
inverse of the Hessian Matrix



The End: Prediction under Uncertainty.

Estimation

» Parameter Estimation
» The Covariance Matrix
» The HPD Intervals

v

Prediction

» Uncertainty in Rate Mode
» Uncertainty in Design Mode




The End: Prediction under Uncertainty.




