

### Methods for Establishing Reaction Networks

Linda J. Broadbelt, Maria C. Curet-Arana and Shumaila Khan

Department of Chemical Engineering Northwestern University Evanston, IL 60208

### **Components of the Reaction Network**

 Reactants, intermediates and products

Reactions

Thermodynamic parameters

Kinetic parameters



# Challenges for Reaction Network Development

- Reactive intermediates have not been detected
- Pathways have not been elucidated experimentally
- Thermodynamic and kinetic parameters are unknown
- Reaction networks are large
- Construction is tedious and prone to user's bias and errors

# Approaches for Elucidating Reaction Networks

### Experimental

- Analysis of kinetic data
- Mechanism analysis

#### Theoretical

- Automated network generation
- Network reduction
- Quantum chemical calculations
- Emerging techniques

# Approaches for Elucidating Reaction Networks

- Experimental
  - Analysis of kinetic data
  - Mechanism analysis
- Theoretical
  - Automated network generation
  - Network reduction
  - Quantum chemical calculations
  - Emerging techniques

### **Automated Network Generation**

- Complex chemistry can be represented by a small number of reaction types
- Complexity arises because of application of reaction types to many different substrates
- Chemistry can be represented mathematically as local changes of bonds and electrons
- Mathematical operators can be implemented in the computer to generate reaction networks automatically

### **Elements of Computer Generated Reaction Networks**

Reaction **Types** 

Reaction Rules

- Graph Theory
- Reaction Matrix **Operations**
- Reactants Connectivity Scan
  - Uniqueness **Determination**
  - Property **Calculation**
  - Termination Criteria



# **Bond-Electron Representation Allows Implementation of Chemical Reaction**

| C | 01111 |
|---|-------|
| Н | 10000 |
| Η | 10000 |
| Н | 10000 |
| Н | 10000 |

methane





methyl radical





ethylene



- ij entries denote the bond order between atoms i and j
- ii entries designate the number of nonbonded electrons associated with atom i

# Chemical Reaction as a Matrix Addition Operation





Reactant Matrices

Reactant Matrix

Reordered Reactant Matrix

Product Matrix

| H        | 001000        |
|----------|---------------|
| C•       | 0 1 0 1 1 1 1 |
| <u>H</u> | 100000        |
| Н        | 010000        |
| Н        | 010000        |
| H        | [010000]      |
|          |               |

# Formulation of Reaction Matrices Using Enzyme Classification System

- Enzyme commission (EC) code number provides systematic names for enzymes
- EC i.j.k.l → unique enzyme
   i → the main class
  - j → the specific functional groups
    - k → cofactors
  - → specific to the substrates

### **Generalized Enzyme Function**

EC 1.1.1.1: Alcohol dehydrogenase

- 1. : Oxidoreductase
- 1.1. : Acting on the CH-OH group of donors
- 1.1.1. : Using NAD+ or NADP+ as acceptor
- 1.1.1.1 : Alcohol dehydrogenase

- 1.1.1.3 : Homoserine dehydrogenase
- 1.1.1.6 : Glycerol dehydrogenase

# Example of a Generalized Enzyme Reaction

• EC 4.2.1.2 (fumarate hydratase)

$$HO_2C$$
  $CO_2H$   $HO_2C$   $CO_2H$   $HO_2C$ 

• EC 4.2.1.3 (aconitate hydratase)

$$HO_2C$$
 $CO_2H$ 
 $HO_2C$ 
 $CO_2H$ 
 $HO_2C$ 
 $CO_2H$ 
 $HO_2C$ 
 $HO_2C$ 

Generalized enzyme reaction (EC 4.2.1)

$$C=C + H_2O$$

# Generalized Enzyme Function Examined at the i.j.k Level

- More than 5,000 specific enzyme functions (i.j.k.l)
- Fewer than 250 generalized enzyme functions (i.j.k)
- Novel enzyme functions should be expected through genomic sequencing, proteomics and protein engineering

# Matrix Representation of Generalized Enzyme Function (i.j.k)

### Generalized enzyme reaction EC 4.2.1

$$HO_2C$$
 $CO_2H$ 
 $HO_2C$ 
 $CO_2H$ 
 $HO_2C$ 

Reactant

Reaction operator

**Products** 

# Implications for Novel Pathway Development

Given a novel reaction (reactant/product), can we identify enzymes (catalysts) that could be engineered (evolved) to carry this novel biotransformation?

If A gives B under 2.4.1 action,

then target enzymes within the 2.4.1 class

# Complex Chemistry Summarized in Terms of Reaction Matrices



#### Silicon nanoparticle production

4 reversible reaction families



#### **Tropospheric ozone formation**

15 thermal reaction families

4 photolysis reaction families

9 small molecule reactions





#### **Biochemical transformations**

205 unique enzyme actions in KEGG database at i.j.k level

### **Application of Reaction Matrix Approach**

### Step 1

Enumerate all enzymes in the EC system

### Step 2

Choose a specific pathway to explore its synthetic ability

### Example

Tryptophan biosynthetic pathway

- · Exists in higher plants and microorganisms
- Pathway does not exist in mammals
- Tryptophan and its derivatives have considerable market value

### Logic of the Algorithm



### **Tryptophan Biosynthesis Pathway**

#### **Input Molecules**

phosphoenolpyruvate (PEP), erythrose-4-phosphate (E4P), glutamine, serine, ribose-5-phosphate (R5P)

Cofactors ATP, NADPH

#### Specific Enzyme Actions

12



### **Addition of Chemical Transformations**

### Generalized reaction for EC 4.1.1 Carboxylyases

$$R-CH + CO_2$$

### Specific member of EC 4.1.1

### Requires chemical transformation

O=C-CH-NH-C=CH 
$$\longrightarrow$$
  $\stackrel{H}{\longrightarrow}$  +  $H_2$ C

## New Pathway from Chorismate to Tryptophan

- Four input molecules: Chorismate, glutamine, R5P, Serine
- The following numbers are unique molecule IDs

#### Original pathway

$$1+2 \xrightarrow{\text{EC413}} 120 \xrightarrow{\text{CT2}} 472 \xrightarrow{\text{EC411}} 17905$$

$$\xrightarrow{\text{EC242}} 120 \xrightarrow{\text{EC531}} + 17905$$

$$\xrightarrow{\text{Tryptophan}} 3 \xrightarrow{\text{26}}$$

#### New pathway

### **Exploring Novel Pathways and Molecules**

# New routes to bioavailable species

$$HO^{\text{CO}_2H}$$
 $HO^{\text{OH}}$ 
OH

1,3,4,5-Tetrahydroxy Cyclohexanecarboxylic acid



Present in KEGG
(Kyoto Encyclopedia of Genes and Genomes)

#### **New molecules**

HO
$$O$$
 $CO_2H$ 
 $CO_2H$ 

3-[1-Carboxy-2-(1,4-dihydro-pyridin

- -3-yl)-ethoxy]-4-hydroxy-cyclohexa-
- -1,5-dienecarboxylic acid



NOT present in KEGG NOT present in CAS REGISTRY

### Migration to Biocatalytic Processes

# New biochemical routes to existing chemicals

1,3,5-Trihydroxy-4-oxo-cyclohexane carboxylic acid



NOT present in KEGG
Present in CAS REGISTRY



# When Does Reaction Network Generation Halt?

 For some chemistries, unique species may continually be formed

•
$$CH_3 + C_2H_4 -> •CC_2H_7$$
  
• $CC_2H_7 + C_2H_4 -> •CC_4H_{11}$   
• $CC_4H_{11} + C_2H_4 -> •CC_6H_{15}$ 

- Without external termination criteria, the network will grow to infinite size
- Rank-based criterion prevents infinite network generation

# Rank-Based Termination of Reaction Network Generation

 Generation of the reaction network is terminated when all species of a specified product rank have been allowed to react



# Reaction Network Growth is Controlled but Rapid



Rank 3 39767

# What Other Strategies Can We Use to Generate Networks Intelligently?

#### Rank

Limits the rank of the reactants

#### **Heavy atom count**

Places a bound on the number of heavy atoms in the reactant



### **Heavy atom shell**

Place a bound on the number of heavy atoms in the product



### **Growth of Reaction Network is Explosive**

#### **Rank-based termination**

Includes many insignificant species of lower rank while excluding important species of higher rank

#### **Heavy atom count (HAC)**

Offers no method to prevent the formation of a large number of chemically insignificant species

#### Heavy atom shell (HAS)

Generates comprehensive set of molecules up to a certain size but includes chemically insignificant ones

|                        | Bound<br>allowed | Number of species | Number of reactions | Maximum<br>Si size |
|------------------------|------------------|-------------------|---------------------|--------------------|
| Rank<br>allowed        | 0                | 3                 | 2                   | 1                  |
|                        | 1                | 5                 | 8                   | 2                  |
|                        | 2                | 12                | 26                  | 4                  |
|                        | 3                | 88                | 274                 | 8                  |
|                        | 4                | 16,279            | 48,168              | 16                 |
| Si #<br>bound<br>(HAC) | 1                | 5                 | 8                   | 2                  |
|                        | 2                | 15                | 36                  | 4                  |
|                        | 3                | 82                | 218                 | 6                  |
|                        | 4                | 701               | 1,794               | 8                  |
|                        | 5                | 11,434            | 26,976              | 10                 |
| Si#                    |                  |                   |                     |                    |
| bound<br>(HAS)         | 8                | 12,527            | 87,938              | 8                  |

### **Iterative Rate-Based Network Construction**



# Properties of Reactions and Molecules are Estimated "On-the-fly"



# Kinetic Correlations Facilitate Rate Constant Estimation

Kinetic correlations relate rate constants to reactivity indices

$$\log k_i = a_i + b_i RI_i$$

- Reactivity indices are easier to calculate than rate constants
- Thermodynamic properties are commonly used

Evans-Polanyi relationship  $E = E_0 + \alpha \Delta H_{rxn}$ 



### **Quantum Chemical Calculations**

#### $H\Psi = E\Psi$

- Information about geometries, energetics and transition states not available experimentally
- Implications for reaction network elucidation
  - Thermodynamic properties for use in kinetic correlations
  - Rate constant values using transition state theory
  - Likelihood of different reaction channels based on kinetics and thermodynamics

# Homogeneous Olefin Epoxidation Provides Opportunities for Reaction Network Elucidation

### **Epoxidation of styrene**



#### Catalyst systems

MnTPP-CI

MnDPyP-Cl

MnDPyP + Molecular Square



# Proposed Mechanism for Mn–Porphyrin Systems

### Structure of Intermediates Unresolved



<sup>[1]</sup> Arasasingham et al., *J. Am. Chem. Soc.*, **1993**, *115*, 7985.

<sup>[2]</sup> Nolte et al., J. Am. Chem. Soc., 1986, 108, 2751, and Nolte et al., J. Molec. Catal., 1985, 31, 271.

<sup>[3]</sup> J. Collman et al., J. Am. Chem. Soc., 1985, 107, 2000, and Collman, et al., J. Am. Chem. Soc., 1990, 112, 1980.

<sup>[4]</sup> He et al., J. Am. Chem. Soc., 1991, 113, 9828.

# Quantum Chemical Calculations Using DFT

- Model porphyrin examined using density functional theory
  - PW91 exchange-correlation functional
  - Basis set: LANL2DZ
  - Full geometry optimization
     with no symmetry constraints

$$CH_3$$
 $H_3C$ 
 $N$ 
 $Mn$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 

Mn-porphyrin system used for calculations

# Size of Catalyst Demands Hybrid Quantum/Classical Approach: ONIOM



high level =DFT with PW91 functional and LANL2DZ basis set low level = UFF force field

## **Oxidized Porphyrin Intermediates**



### **Energies for Reaction Pathway**









### Reaction Families for Silicon Nanoparticle Production

#### Hydrogen elimination / Hydrogen addition

 $(silane)_n \leftrightarrow (silylene)_n + H_2$ 



#### Silylene elimination / Silylene addition

 $(silane/silylene/silene)_n \leftrightarrow (silane/silylene/silene)_m + (silylene)_{n-m}$ 



#### Silylene to silene isomerization

 $(silylene)_n \leftrightarrow (silene)_n$ 



#### Ring formation / Ring opening

 $(acyclic silylene)_n \leftrightarrow (cyclic silane)_n$ 



### Si<sub>2</sub>H<sub>2</sub> is a Critical Intermediate for Growth

### Four likely structures of Si<sub>2</sub>H<sub>2</sub>







# Can Addition of Si<sub>2</sub>H<sub>2</sub> into Si-H Bonds Be Described Using the Silylene Addition Reaction Family?

#### Silylene elimination / Silylene addition

$$(silane/silylene/silene)_n \leftrightarrow (silane/silylene/silene)_m + (silylene)_{n-m}$$

Is 
$$H > Si = Si$$
: with the properties of  $Si = Si$ 

representation of the detailed chemistry of Si<sub>2</sub>H<sub>2</sub> isomers?

### Potential Energy Surface for Si<sub>2</sub>H<sub>2</sub> Isomerization from G3//B3LYP



# Potential Energy Surface for Reactions between Si<sub>2</sub>H<sub>2</sub> and SiH<sub>4</sub> from G3//B3LYP



# Comparison of Product Yields for Simplified and Detailed Mechanisms



Mechanism B: Detailed Mechanism

Mechanism A: Simplified Mechanism

### **Summary**

- Automated network generation can be used to build complex reaction networks for a wide range of chemistries
- Reaction networks require specification of species, reactions, thermodynamic properties, and kinetic parameters
- Quantum chemical calculations are increasingly valuable in reaction network elucidation

### **Acknowledgments**

#### **Funding**

National Science Foundation Environmental Protection Agency Department of Energy

#### **Collaborators**

Hsi-Wu Wong Mark Swihart Xuegeng Li Shumaila Khan Qizhi Zhang

Vassily Hatzimanikatis Chunhui Li Chris Henry Joanna Gonzalez Matt Jankowski Justin Ionita