Eurokin's 10th Anniversary Meeting, Lyon, May 19-20, 2008

First principles kinetics of heterogeneously catalyzed reactions: oxidation of hydrocarbons over V₂O₅ catalysts

Konstantinos Alexopoulos, Marie-Françoise Reyniers, Guy B. Marin

Laboratory for Chemical Technology, Krijgslaan 281 (S5), B-9000 Ghent, Belgium

Overview

Introduction

- > V₂O₅: catalyst models
- ➢ Propylene adsorption on V₂O₅: cluster versus periodic
- ▶ Propylene activation on V_2O_5
 - allylic C-H activation
 - C=C activation
- > V₂O₅ supported on TiO₂: catalyst models
- \geq Propylene adsorption on V₂O₅ supported on TiO₂
- Conclusions

Selective hydrocarbon oxidation

- transform hydrocarbon (HC) to value-added and synthetically useful chemicals
- first step in total oxidation of organic pollutants (VOC)

- Goals: combined use of QM methods and experiment (steady state, transient, in-situ XANES/EXAFS) to obtain
 - 1. insight in reaction mechanism (qualitative)
 - 2. kinetic & thermodynamic data (quantitative)
 - 3. insight in the influence of the support (quantitative)
 - 4. insight in the catalyst structure under working conditions
 - 5. insight in catalyst properties on reactivity/selectivity

 \Rightarrow structure-activity relation

→ development of ab initio based fundamental kinetic model for catalyst optimization/design & process optimization

Mars-van Krevelen mechanism

Electron transfer between catalyst and HC

Eurokin's 10th Anniversary Meeting, Lyon, May 19-20, 2008

Propylene activation on vanadium oxide

Evaluation of different catalyst models

Evaluation of various possible routes for C-H and C=C activation on different surface sites

 \succ Evaluation of the influence of TiO₂ support

Vanadium oxide – crystal structure

- distorted VO₆ octahedra with V–O bond distances varying between small (1.58 Å) and large values (2.79 Å)
- layered structure: weak interlayer van der Waals type interaction
- surface oxygen atoms with different coordination number: vanadyl oxygen (Ov), bridge oxygen (Ob), chain oxygen (Oc) ⇒ can have different catalytic reactivities

Computational methods

Density Functional Theory (DFT)

- **Cluster calculations**
- TURBOMOLE and GAUSSIAN03
- Functional/Basis set:
 PBE0/TZVP
- Cluster models of different sizes = hydroxylated cutouts of the catalytic surface:
 - \rightarrow Electronic properties = f(size)
 - energy
 - atomic charges
 - bond orders

Periodic calculations

- VASP
- GGA-PW91: geometry
- GGA-RPBE: energy
- PAW method of Blöchl for the description of the electron-ion interaction
- Spin polarization
- Surface slabs:
 - \rightarrow Electronic+structural properties
 - number of atom layers
 - thickness vacuum layer
 - number of k-points
 - DOS + band gap

Cluster models for V2O5 (001)

Cluster size convergence

	V2O9H8	V6O20H10	V10O31H12	V16O49H18
atom		Mullil	ken charge	
V	0,91	0.99	1.01	1.01
Ov	-0,31	-0.27	-0.26	-0.26
Ob	-0,50	-0.52	-0.55	-0.55
Ос	-0,60	-0.58	-0.59	-0.59

Mulliken atomic charges (with S-VWN/SV(P) using TURBOMOLE)

	V2O9H8	V6O20H10	V10O31H12	V16O49H18	Meyer Bond
bond		k	oond orders		order indices
V-Ov	2.05	2.09	2.09	2.10	$(With B3LYP/6-31G^*)$
V-Ob	2 x 0.80	2 x 0.83	2 x 0.83	2 x 0.83	GAUSSIAN03)
V-Oc	0.40/-	0.38 / 2 x 0.51	0.35 / 2 x 0.55	0.35 / 2 x 0.55	

⇒ convergence of properties: $V_{10}O_{31}H_{12}$ or larger clusters ⇒ nucleophilicity order based on charges: Oc > Ob > Ov

Eurokin's 10th Anniversary Meeting, Lyon, May 19-20, 2008

Periodic (slab) model for V2O5 (001)

Periodic: bulk V2O5 versus slab

 \succ Comparison atom positions in bulk V₂O₅ with 1-layer and 2-layer slab

	Bond length (Å)							
	V=Ov	V-Ob	V-Oc	V-Oc'	V…Ov			
Exp.	1.58	1.78	1.88	2.02	2.79			
Bulk	1.61	1.79	1.89	2.04	2.87			
Slab-1layer	1.60	1.81	1.90	2.05	-			
Slab-2layers	1.60/1.61	1.79/1.80	1.90/1.89	2.08/2.02	2.87			

Good agreement between experimental and calculated structures

GGA/PAW using (8×8) mesh; $E_{cutoff} = 400 \text{ eV}$; optimized lattice parameters

Periodic: bulk V2O5 versus slab

 \Rightarrow weak interlayer binding: 1-layer slab provides reasonable model for V₂O₅ surface at reasonable computational cost GGA/PAW using (8×8) mesh; E_{cutoff} = 400 eV; optimized lattice parameters

V2O5: electronic properties cluster versus slab

	Ε _{fermi}	gap	width	nucleophilicity order
$V_{10}O_{31}H_{12}$	8.3	4.1	8.5	$Oc > Ob \ge Ov$
slab	8.9	2.0	4.7	$Oc > Ov \ge Ob$
bulk exp.	6.7 ± 0.1**	2.3 ± 0.1*	5.5 ± 0.5***	

*Cogan et al., J. Appl. Phys., 66, 1333 (1989)

**Witko et al., Surf.Sci., 375, 385 (1997)

***Witko et al., Phys.Rev.B, 59, 10 583 (1999)

Propylene adsorption on V2O5: clusters $CH_2=CH-CH_{3(g)} + Ov^* \longrightarrow CH_2=CH-CH_2Ov^*H$

$\Delta E_r = E_{adsorbed} - E_{cluster} - E_{propylene(g)}$								
	V6O20H10		V10	O31H12				
Distances (Å)	closed spin shell optimized		closed shell	spin optimized				
		triplet		triplet				
V-Ov	1.97	2.00	1.96	1.98				
Ov-C	1.43	1.44	1.45	1.45				
Ov-H	1.00	1.00	0.99	0.99				
O'v-H	1.69	1.69	1.74	1.83				
Angles (°)								
V-Ov-C	128.3	128.6	128.6	131.7				
V-Ov-H	116.3	110.3	115.4	114.1				
C-Ov-H	113.4	111.4	113.0	112.5				
Ov-H-Ov'	160.8	164.0	157.8	157.7				
Ob-V-Ov	85.6	87.5	87.8	89.2				
∆E _{chem} (kJ/mol)	+117	+12	+83	-43				

Propylene adsorption on V2O5: cluster/periodic

$CH_2 = CH - CH_{3(q)} + Ov^* \longrightarrow CH_2 = CH - CH_2Ov^*H$

	V10O31H12		Per	iodic
	closed shell	spin optimized	single layer	double layer
Distances (Å)		triplet	triplet	triplet
V-Ov	1.96	1.98	1.93	2.01
Ov-C	1.45	1.45	1.48	1.50
Ov-H	0.99	0.99	1.03	1.01
О'v-Н	1.74	1.83	1.62	1.73
Angles (۹				
V-Ov-C	128.6	131.7	128.6	134.3
V-Ov-H	115.4	114.1	114.4	107.8
C-Ov-H	113.0	112.5	115.0	108.4
Ov-H-Ov'	157.8	157.7	163.1	166.9
Ob-V-Ov	87.8	89.2	88.4	88.0
∆E _{chem} (kJ/mol)	+83	-43	+46	+42

 \Rightarrow cluster versus periodic: same local geometry, different energetics

Propylene adsorption on V2O5: cluster/periodic

 \Rightarrow periodic model is used for further study

Propylene C-H activation

- Formation of adsorbed alcoholic intermediate: CH₂=CH-CH₂-H_(g) + O* → CH₂=CH-CH₂-O*H
- Formation of allylic radical:
 - $CH_2=CH-CH_2-H_{(g)}+O^* \rightarrow CH_2=CH-CH_2^{\circ}+O^*H$

allylic radical and H adsorbed on Ov

Note: no stable intermediate could be located for interaction of allylic C-H with V-O groups of V_2O_5 (001) surface leading to heterolytic C-H bond cleavage

Allylic C-H bond activation on Ov and Ob

Allylic C-H activation on Ov and Ob

1-layer slab V ₂ O ₅							
Distances (Å)	Ov	Distances (Å)	Ob				
V-Ov	1.93	V-Ob	2.16				
Ov-C	1.48	Ob-C	1.52				
Ov-H	1.03	Ob-H	0.99				
Ov'-H	1.62	Ос-Н	2.34				
Angles (°)		Angles (°)					
V-Ov-C	128.6	V-Ob-C	117.2				
V-Ov-H	114.4	V-Ob-H	102.1				
C-Ov-H	115.0	C-Ob-H	110.0				
Ov-H-Ov'	163.1	V-Ob-V	106.2				
Ob-V-Ov	88.4	Ob-V-Ov	115.1				
∆E _{chem} (kJ/mol)	+46	∆E _{chem} (kJ/mol)	+169				

 \Rightarrow formation alcoholic intermediate on Ob: elongated V-O_b bonds \Rightarrow alcoholic intermediate on Ov more stable than on Ob

Propylene C-H activation: thermodynamics

Periodic slab	V ₂ O ₅	
∆E _r (kJ/mol)	Ov	Ob
CH ₂ =CH-CH ₂ ° + *OH	88	104
CH ₂ =CH-CH ₂ O*H	46	169

 \Rightarrow alcoholic intermediate on Ov most stable

 \Rightarrow alcoholic intermediate on Ob least stable

 \Rightarrow Ob*H less stable than Ov*H

Propylene C=C activation

- Formation of adsorbed peroxy intermediate: $CH_2=CH-CH_2-H_{(g)} + 2O^* \rightarrow CH_2-CH-CH_3$ $O_i^* O_{ii}^*$
- Formation of epoxy intermediate:

Propylene C=C bond activation over vanadyl Ov*

Propylene C=C bond activation over vanadyl Ov*

epoxy intermediate

peroxy intermediate

⇒ On Ov sites: peroxy intermediate is more stable than epoxy intermediate

Ероху		Peroxy		
O _v		O _v ⁱ , O _v ⁱⁱ		
Distance s (Å)		Distance s (Å)		
C _i -C _{ii}	1.48	C _i -C _{ii}	1.53	
C _i -O _v	1.46	C _i -O _v ⁱ	1.43	
C _{ii} -O _v	1.50	C _{ii} -O _v ⁱⁱ	1.43	
V-O _v	1.95	V-Ovi	1.75	
		V-O _v ⁱⁱ	1.73	
Angles (°)		Angles ()		
V-O _v -C _i	135.9	V-O _v ⁱ -C _i	136.5	
V-O _v -C _{ii}	161.2	V-O _v ⁱⁱ -C _{ii}	150.0	
O _v -V-O _b	107.7	O_v^i -V- O_b	100.1	
		O_v^{ii} -V- O_b	100.8	
kJ/mol				
ΔE_{r}	+108		-20	

Propylene C=C bond activation over valley O*

Propylene C=C bond activation over valley O* **∢**0,ⁱ O_cⁱ∠ **O**_bⁱⁱ v $O_c^{\ i}, O_v^{\ ii}$ $O_b^{\ i}, O_c^{\ ii}$ $O_b{}^i, O_b{}^{ii}$ O_c^i, O_c^{ii} Dist. (Å) Dist. (Å) Dist. (Å) Dist. (Å) C_i-C_{ii} 1.52 1.52 $C_i - C_{ii}$ $C_i - C_{ii}$ $C_i - C_{ii}$ 1.58 1.58 $C_i - O_c^i$ $C_i - O_b^i$ 1.45 C_i-O_bⁱ C_i-O_cⁱ 1.48 1.47 1.46 C_{ii} - O_v ⁱⁱ $C_{ii} - O_c^{ii}$ C_{ii}-O_bⁱⁱ $C_{ii} - O_c^{ii}$ $\mathbf{V}_{\mathbf{O}_{\mathbf{b}}^{\mathbf{i}}}$ 1.45 1.50 1.47 1.50 O_cⁱⁱ V-O_vii V-O_bⁱ V-O_hⁱ V-O_cⁱ 1.78 1.97 1.98 2.47 V-O_bⁱⁱ $V-O_c^i$ V-O_cⁱⁱ $V\text{-}O_{c}^{\ ii}$ 2.17 2.17 2.48 1.96 Ang. (°) Ang. (°) Ang. (°) Ang. (°) Oⁱ $O_{c}^{i}-C_{i}-C_{ii}$ $O_{b}^{i}-C_{i}-C_{ii}$ $O_c^i - C_i - C_{ii}$ 106.7 108.9 $O_{b}^{i}-C_{i}-C_{ii}$ 120.0 124.0 $O_c^{ii}-C_{ii}-C_i$ $O_v^{ii}-C_{ii}-C_i$ $O_{c}^{ii}-C_{ii}-C_{i}$ $O_{b}^{ii}-C_{ii}-C_{i}$ (V) (V) 106.1 106.2 115.7 120.6 V-O_cⁱ-V V-O_bⁱ-V V-O_bⁱ-V V-O_cⁱ-V 121.3 124.9 122.4 124.2 $O_v^{ii}-V-O_c^i$ V-O_bⁱⁱ-V V-O_cⁱⁱ-V 82.0 O_cⁱⁱ-V-O_bⁱ 78.2 123.9 121.8 kJ/mol +54 +103 +187 ΔE_r +73

Eurokin's 10th Anniversary Meeting, Lyon, May 19-20, 2008

Propylene C=C activation: thermodynamics

ΔE_{r} (kJ/mol)	1-layer slab V ₂ O ₅							
active site(s)	0 _v	Ovi, Ovi	Ovi, Oc	O _c ⁱ , O _v ⁱⁱ	O _b ⁱ , O _b ⁱⁱ	O _b i, O _c ii	O _c ⁱ , O _b ⁱⁱ	Oc ⁱ , Oc ⁱⁱ c
peroxy		-20	77	54	103	73	80	187
ероху	108							

⇒ peroxy intermediate on Ov-Ov most stable

 \Rightarrow peroxy intermediate on Oc-Oc least stable

Propylene activation: energy diagram

30

V2O5: O2 adsorption on oxygen vacancy

 \succ dissociative adsorption of O₂ on an oxygen vacancy

 $O_2 + 2e \rightarrow O_2^{2-}$

	atomic charges						
	O ₂ ² ·v Ov Ob Oc						
slab/O ₂ ²⁻	-0.4	-0.8	-1.0	-1.2			

Propylene adsorption on defect oxygen site

Propylene adsorption on defect oxygen site

 \Rightarrow C=C bond activation: more likely on sites formed by dissociative adsorption of O₂ on vacancy?

 \Rightarrow further calculations of Eact required

O _v ⁱ , O _v ⁱⁱ		O_2^{2-v} (instead of O_v)	
Distances		Distances	
(A)		(A)	
C _i -C _{ii}	1.53	C _i -C _{ii}	1.54
C _i -O _v ⁱ	1.43	C _i -O ⁱ	1.40
C _{ii} -O _v ⁱⁱ	1.43	C _{ii} -O ⁱⁱ	1.42
V-Ovi	1.75	V-O ⁱ	1.85
V-Ov ⁱⁱ	1.73	V-O ⁱⁱ	1.80
Angles ()		Angles (°)	
V-O _v ⁱ -C _i	136.5	V-O ⁱ -C _i	124.3
V-O _v ⁱⁱ -C _{ii}	150.0	V-O ⁱⁱ -C _{ii}	126.7
O_v^i -V- O_b	100.1	O ⁱ -V-O ⁱⁱ	77.7
O_v^{ii} -V- O_b	100.8	O ⁱⁱ -V-O _b	78.2
kJ/mol			
ΔE_{r}	-20		-184

Propylene activation on V2O5: summary

≻1 or 2-layer periodic slab more suited than cluster

≻allylic C-H activation

- occurs preferentially on Ov via formation of allylic radical

 E_{act} : Ov = 116 kJ/mol; Ob = 139 kJ/mol

➤C=C bond activation

- peroxy on O₂²-v most stable intermediate
- more likely on electrophilic oxygen sites formed by dissociative adsorption of O₂ on vacancy than on Ov?
- further calculation of E_{act} required

Supported vanadia: V2O5/TiO2 (anatase)

•Used widely in industry and experiments as an effective catalyst for oxidation of hydrocarbons

Catalyst structure: depends on vanadium loading

•High performance for "monolayer" of V₂O₅ on TiO₂ (anatase)

Influence of support: V2O5/TiO2 (anatase)

Weak interaction: support is high surface carrier for catalyst

Model: crystallographic V_2O_5 (001) layer on top of TiO₂ (001) anatase

Strong interaction: synergy between catalyst and support

Model: epitaxial layer of V_2O_5 on TiO₂ (001) anatase

Eurokin's 10th Anniversary Meeting, Lyon, May 19-20, 2008

 \Rightarrow band gap is considerably smaller for the supported catalysts

- \Rightarrow weak: considerable contribution of Ti_d near E_{fermi}
- \Rightarrow strong: considerable contribution of Ob and Ov near E_{fermi}

Propylene adsorption: influence of support

 $CH_2=CH-CH_2-H_{(g)}+O^* \rightarrow CH_2=CH-CH_2-O^*H$

ΔE _r (kJ/mol)	Ov	Ob
V ₂ O ₅	+46	+169
V_2O_5/TiO_2 – weak	-	+154
V ₂ O ₅ /TiO ₂ – strong	-87	-
Experimental*	-72 ± 8 kJ/mol	

⇒ weak interaction with support: small influence on propylene adsorption via allylic C-H

 \Rightarrow strong interaction with support: strong increase in stability of alcoholic intermediate

* Grabowski et al., Top. Catal., 3 (1996) 2778

Propane adsorption: influence of support

 $CH_3CH_2\text{-}CH_{3(g)} + O_v^* \rightarrow (CH_3)_2CH\text{-}O^*H$

ΔE _r (kJ/mol)	Ov
V ₂ O ₅	+42
V_2O_5/TiO_2 – weak	+35
V_2O_5/TiO_2 – strong	-129

⇒ weak interaction with support: small influence on adsorption of propane via secondary C-H

 \Rightarrow strong interaction with support: strong increase in stability of secondary alcoholic intermediate

Conclusions

periodic slab models best suited to model unsupported and supported V₂O₅ catalysts

allylic C-H activation on V₂O₅ (001): preferentially on Ov via formation of allylic radical

 E_{act} : Ov = 116 kJ/mol; Ob = 139 kJ/mol

- C=C bond activation on V₂O₅ (001): more likely to occur on sites formed by dissociative adsorption of O₂ on vacancy?
 - further calculation of E_{act} required
- \succ strong interaction TiO₂ and monolayer vanadia:
 - strongly influences propylene adsorption via allylic C-H
 - ΔE_r corresponds well with experimentally observed value