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Countercurrent studies TUD

• Paul Lebens - Internally finned monoliths (IFM)
• Hydrodynamics, flooding, mass transfer, modelling

• Bastiaan van Hasselt - Three-levels of Porosity (TLP)
• Hydrodynamics, mass transfer, modelling

• Achim Heibel – Monoliths various geometries
• Hydrodynamics, mass transfer, RTD, modelling, hydrogenation

• Tilman Schildhauer – Structured catalysts
• Reactive stripping-esterification, modelling
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What will be covered…..

Countercurrent operation 
• Why?
• Where?
• How?

Cases
• Reactive stripping - equilibrium limitation & selectivity
• Modeling simple kinetics HDS – mass transfer & inhibition

• Athena Visual Studio example
• Co-current PFR – Initial Value problem
• Countercurrent – Boundary Value problem

• Concluding remarks

Qualitative exploration
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Countercurrent operation

• Equilibrium limitations - maintaining driving force
• Removal product, shift equilibrium

• Increase productivity – avoid competitive adsorption, secondary 
reactions
• Removal inhibiting or deactivating products

• Two-phase operation (GL, LL)
• Catalytic distillation
• Reactive stripping
• Catalytic operation
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Where/when do reactive stripping?

Removal of reaction product (byproduct)
by means of an inert gas/vapour:

• to ‘shift’ equilibrium or overcome azeotropes

• to avoid inhibition/catalyst deactivation

• for in-situ cooling by solvent evaporation

• when reaction and separation conditions (p,T) don’t match!
• e.g. high boiling esters/ethers, polyesters, bisphenol A 

(Sinopec/Lummus), transesterifications

7/55

Catalysis

Engineering

Reactive distillation vs. stripping
Low boiling ester High boiling ester

from Schembecker and 
Tlatlik, Chem. Eng. Proc. 
42 (2003), 179 - 189
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Counter- vs. co-current operation I

• Usually countercurrent operation is more favorable in 
separation processes

• But with very low entrance concentrations internal 
loop may occur (reaction)

column length

C H2O

Introduction – Hydrodynamics - Mass transfer - Reactive experiments - Selectivity – Comparison structured packings

wet liquid ‘dry’ gas‘dry’ liquid ‘dry’ gasreaction

stripping
back-
absorption
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Counter- vs. co-current operation II

• Internal loop no problem, when 
liquid is recycled partially:

• If necessary, cross flow (cocurrent operation):

liquid 

strip gas strip gas strip gas

liquid 

strip gas

Hydrodynamics essential
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Creating G -L (and L - S) - interfaces

Sulzer DX 
(coated with catalyst)

Sulzer katapak-S 
(filled with catalyst)

Monolith        
(coated with catalyst)

• Maximize G-L (L-S) mass transfer, minimize pressure drop, 
balance rates of processes

→ High Specific surface areas, high voidage
→ Structured catalysts!
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Application of monoliths

m
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Feed

pump
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Gas/Liquid
separator

deNOx Three Phase monolith
Loop Reactor
Heiszwolf et al, CES, 2001

Removal 
of VOCs
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Two-phase flow patterns in capillaries

Taylor flow
cocurrent, high 
mass transfer!

increasing 
Gas/Liquid ratio

Film flow
countercurrent
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coated 
monolith wall

counter-current
laminar gas flow

laminar liquid flow

Reactive stripping in monoliths

• Low gas-liquid interaction
→ low pressure drop
→ decoupling of mass transfer 

and hydrodynamics

• No static hold-up 

• Issues: flooding, liquid distribution

• Two-phase film flow in  
monolith  channels  (d ≥ 2 mm)
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Flooding I
Flooding in monoliths starts mostly at the outlet (and 
due to bad stacking) → special outlet devices

A.K. Heibel, F. Kapteijn, J. A.Moulijn, 
Ind. Eng. Chem. Res., 2002, 41, 6759
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25 cpsi monolith, dhydr = 4 mm
(Heibel et al., 2002)
katapak S, dhydr = 6.4 mm
(Moritz et al., 1999)
multipak, dhydr = 7 mm
(Kolodziej et al., 2001)
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Flooding II

New inlet/outlet design shifts flooding limits!
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Flooding III

• Optimised outlet device allows countercurrent operation in 
200 cpsi monoliths (dhydr = 1.25 mm!)
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AA  BB  CC 

Improved stacking

Better way of stacking monoliths might improve mixing and 
therefore increase G-L mass transfer without causing flooding

T. J. Schildhauer, F. Kapteijn and J. A. Moulijn 
Ind.Eng.Chem.Res. 2005,  44, 9556-9560.

Heibel and Jamieson  Patent  WO03040847, 2003
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Film flow monoliths with modified 
geometries 

Channel geometry influences flow distribution and RTD!
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Magnetic Resonance Imaging (MRI)
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G-L mass transfer – developed flow

Higher S/V ratio results in better mass transfer
Slight increase with liq. flow due to increased G-L interfacial area
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Intermediate conclusion I

• Film flow monoliths suited for countercurrent operation 

• Flooding performance and liquid distribution can be 
optimised

• Structured distillation packings show better G-L mass 
transfer than monoliths with fully developed film flow

• Higher mass transfer rates (and narrower RTD) expected 
from mixing between stacked monolith pieces

Introduction – Hydrodynamics - Mass transfer - Reactive experiments - Selectivity – Comparison structured packings 22/55
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Model reaction - Esterification

OH OH

O

O

O

+ →← +  H2OOH OH

O

O

O

+ →← +  H2O

• Acid itself catalyses reaction
• Cumene as solvent (75%)

Octanol +  Hexanoic acid  ↔ Ester  +  Water 

• Solid acid catalyzed (zeolite BEA) reaction:
- conversion is equilibrium limited
- water ‘inhibits’ the catalyst active sites
⇒ water removal by stripping

Introduction – Hydrodynamics - Mass transfer - Reactive experiments - Selectivity – Comparison structured packings
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Experiments in pilot-scale plant
phase 

separator

liquid 
vessel

reactor

N2

N2 feed

Inlet sample

Outlet sample

Lreactor 2 m
∅column 5 cm
Vliquid 15 l
P 4 bar
T 160 °C
liquid feed 25 kg/h
gas feed 500 Nl/h
Cacid 12 mol-%
Calcohol 12 mol-%
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It works!
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Model reaction – Side reactions
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Selectivity

~ roctanol

~ rester
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Comparison inst. selectivities (5 internals)
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Kinetic model (Beers et al., Kads, H2O by I. Hoek)
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Column profile water concentration

column length

C H2O [ppm]
only reaction 

liquid 

only stripping

gas
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Column profile water concentration

column length

C H2O [ppm]

Inlet 

maximum

outlet
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Intermediate conclusions II

• Reactive stripping can intensify processes
• Film flow monoliths are suitable reactor internals

• Selectivities can be explained qualitatively from 
interplay between kinetics and mass transfer

Introduction – Hydrodynamics - Mass transfer - Reactive experiments - Selectivity – Comparison structured packings
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Countercurrent operation

• Equilibrium limitations - maintaining driving force
• Removal product, shift equilibrium

• Increase productivity – avoid competitive adsorption, secondary 
reactions
• Removal inhibiting or deactivating products

• Two-phase operation (GL, LL)
• Catalytic distillation
• Reactive stripping
• Catalytic operation
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Model case study

• Co-current versus counter-current – plug flow 
• Gas-Liquid system (solid catalyst) – hydrotreating

• HDS, isothermal
• Gas-liquid mass transfer
• Conditions: 

• 638K, 80 bar, 400 mol/m3, 352 mol H2/s, 432 m3

• Pure hydrogen feed, inlet liquid no hydrogen
• Kinetics

• First order in both reactants
• With & without inhibition

v.Hasselt, Lebens v.Hasselt, Lebens et alet al. . Chem.Engng.SciChem.Engng.Sci.  54 (1999) 4791.  54 (1999) 4791--47994799

=
+ +

2

2 2
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Co-current

• Effect mass transfer
• No inhibition
• Only H2S inhibition
• H2S and organics inhibition

H2

S

H2, H2S

S, H2, H2S 

36/55

Catalysis

Engineering

kLa = 5*10-4 s-1 kLa = 1*10-3 s-1

kLa = 5*10-3 s-1

k = 10-6  KH2S = KS = 0

Co-current

• mass transfer
• no inhibition
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kLa = 5*10-4 s-1 kLa = 1*10-3 s-1

kLa = 5*10-3 s-1

k = 10-6  KH2S = 1.09*10-2  KS = 0
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kLa = 5*10-4 s-1 kLa = 1*10-3 s-1

kLa = 5*10-3 s-1

k = 10-6  KH2S = KS = 1.09*10-2 

Co-current

• mass transfer
• H2S, Org-S inhibition

( ) ( ) ( ) ( ) ( )

Space

-100

0

100

200

300

400

500

0.2 0.4 0.6 0.8 1.0

( ) ( ) ( ) ( ) ( )

Space

-100

0

100

200

300

400

500

0.2 0.4 0.6 0.8 1.0

Space

-100

0

100

200

300

400

500

0.2 0.4 0.6 0.8 1.0

HH22

HH22SS

OrgOrg--SS FFH2H2

FFH2SH2S

Order 0 to negative
Low conversions

39/55

Catalysis

Engineering

Co-current operation

• Inhibition 
• Lowers conversion
• Change from apparent 1st to 0th (neg.) order

• Mass transfer improves conversion
• apparent reaction order increases with kLa
• Poor mass transfer yields negative order
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Counter-current

• Effect mass transfer
• No inhibition
• Only H2S
• Both H2S and reactant

H2

S

H2, H2S

S, H2, H2S 
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kLa = 5*10-4 s-1 kLa = 1*10-3 s-1

kLa = 5*10-3 s-1
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Counter-current

• Inhibition 
• Lowers conversion
• Change apparent order (~from 1st to 0th )

• Mass transfer
• Increases conversion
• Changes apparent order (~from neg. to pos.)

• H2S
• Liquid concentration through maximum
• Leaves reactor in liquid phase
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Co- versus Counter-current

• Effect mass transfer
• No inhibition
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Co- versus Counter-current

• No inhibition:
• Low mass transfer: co-current preferred
• High mass transfer: countercurrent preference

• Hydrogen availability
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Co- versus Counter-current

• Effect mass transfer
• H2S inhibition
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k = 10-6

kLa = 5*10-4 s-1

KH2S = 1.09*10-2
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Co-current Counter-current

k = 10-6

kLa = 5*10-3 s-1

KH2S = 1.09*10-2
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Co- versus Counter-current

• No inhibition:
• Low mass transfer: co-current preferred
• High mass transfer: countercurrent preference

• H2S inhibition:
• Changeover at higher mass transfer rates

• Higher H2, lower H2S concentration at end
• Only at high conversion
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Conclusions modeling - single reactor

• Countercurrent only better at high conversions
• Inhibition requires higher mass transfer rates for 

advantage
• Liquid phase not necessarily free of H2S

• Catalyst grading not attractive

• Apparent reaction order: negative to positive
• Decreases with inhibition and poorer H2 availability
• Increases with increasing mass transfer
• Countercurrent stronger order decrease
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Thanks!

Any question?
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