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Paul Lebens - Internally finned monoliths (IFM) Countercurrent operation

e Hydrodynamics, flooding, mass transfer, modelling
Bastiaan van Hasselt - Three-levels of Porosity (TLP)
* Hydrodynamics, mass transfer, modelling

o Why?
* Where?
« How? Qualitative exploration

Achim Heibel — Monoliths various geometries Cases
» Hydrodynamics, mass transfer, RTD, modelling, hydrogenation  Reactive stripping - equilibrium limitation & selectivity
Tilman Schildhauer — Structured catalysts * Modeling simple kinetics HDS — mass transfer & inhibition
* Reactive stripping-esterification, modelling » Athena Visual Studio example
e Co-current PFR — Initial Value problem
e Countercurrent — Boundary Value problem
e Concluding remarks
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Equilibrium limitations - maintaining driving force
¢ Removal product, shift equilibrium
Increase productivity — avoid competitive adsorption, secondary

Removal of reaction product (byproduct)
by means of an inert gas/vapour:

to ‘shift’ equilibrium or overcome azeotropes

reactions

L N to avoid inhibition/catalyst deactivation
« Removal inhibiting or deactivating products

for in-situ cooling by solvent evaporation

Two-phase operation (GL, LL) when reaction and separation conditions (p,T) don’t match!

 Catalytic distillation e.g. high boiling esters/ethers, polyesters, bisphenol A

) N (Sinopec/Lummus), transesterifications
* Reactive stripping

e Catalytic operation

Catalysis Catalysis
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stripping

Low boiling ester High boiling ester

» Usually countercurrent operation is more favorable in
separation processes

» But with very low entrance concentrations internal
loop may occur (reaction)
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strip gas * Maximize G-L (L-S) mass transfer, minimize pressure drop,
* Internal loop no problem, when I balance rates of processes

liquid is recycled partially: — High Specific surface areas, high voidage
— Structured catalysts!

jap

» If necessary, cross flow (cocurrent operation):
strip gas strip gas strip gas

Sulzer DX Sulzer katapak-S Monolith
(coated with catalyst) (filled with catalyst) (coated with catalyst)
%
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heat
exchanger

monolith

[/

compressor

Removal
of VOCs

i ——
Gas/Liquid . q
separator a increasing

pamp Gas/Liquid ratio

Three Phase monolith Taylor flow Film flow

Loop Reactor

cocurrent, high countercurrent
Heiszwolf et al, CES, 2001

mass transfer!
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» Two-phase film flow in /
monolith channels (d >2 mm)  .ounter-current

laminar gas flow

» Low gas-liquid interaction

— low pressure drop
— decoupling of mass transfer
and hydrodynamics

* No static hold-up coated —
monolith wall

* Issues: flooding, liquid distribution

Catalysis
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New inlet/outlet design shifts flooding limits!

Flooding limits of
50 cpsi monolith
(dhydr =3 mm) in
countercurrent

operation
better devices

No outlet device

1.0
Ugo [m/s]

water/air

Catal sis T. J. Schildhauer, F. Kapteijn and J. A. Moulijn
y Ind.Eng.Chem.Res. 2005, 44, 9556-9560.
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Flooding in monoliths starts mostly at the outlet (and

due to bad stacking) — special outlet devices
40

L Ay M 25 cpsi monolith, d,, 4 =4 mm water/air
(Heibel et al., 2002)
¢ katapak S, dy, 4 = 6.4 mm
(Moritz et al., 1999)
¢ multipak, dy, 4 =7 mm
(Kolodziej et al., 2001)

superficial liquid velocity [mm/s]

superficial gas velocity [m/s]

Catalysis . . .
A.K. Heibel, F. Kapteijn, J. A.Moulijn,

E ngineering Ind. Eng. Chem. Res., 2002, 41, 6759

Uo [m/s]

water/air

0.0000
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Optimised outlet device allows countercurrent operation in
200 cpsi monoliths (df, g, = 1.25 mm!)
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Improved stacking

T 1T
A B C

Better way of stacking monoliths might improve mixing and
therefore increase G-L mass transfer without causing flooding

17/55)

. T. J. Schildhauer, F. Kapteijn and J. A. Moulijn
Catalysis Ind.Eng.Chem.Res. 2005, 44, 9556-9560. % f
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25 cpsi
square

Engineering

Magnetic Resonance Imaging (MRI)

25 cpsi 25 cpsi
Finned (IFM) Rounded (MRC)
' | - |

£

80 - 500 mm

0.000
0.005 0.010 0.015 0.020 0.025

uro[m/s]
Higher S/ Vratio results in better mass transfer
Slight increase with lig. flow due to increased G-L interfacial area
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DX

X Katapak

M SQ 25 cpsi
IFM
MRC

A 50 cpsi

200 300 400
nitrogen-flow [NI/h]
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(o] (0]
Film flow monoliths suited for countercurrent operation NNN"0on + HO/U\/\/\ 2 /\/\/\/\o)l\/\/\ 7

Flooding performance and liquid distribution can be Octanol + Hexanoic acid <> Ester + Water
optimised

Structured distillation packings show better G-L mass « Solid acid catalyzed (zeolite BEA) reaction:
transfer than monoliths with fully developed film flow - conversion is equilibrium limited

Higher mass transfer rates (and narrower RTD) expected - water ‘inhibits’ the catalyst active sites

from mixing between stacked monolith pieces — water removal by stripping
* Acid itself catalyses reaction

* Cumene as solvent (75%)
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Side reactions

thermodynamic _equilibrium + HO

reactive stripping o

o
catalyst, without water )]\/\/\ Jk/\/\
NN D NN
HO o OH o

removal ; )
hexanoic acid octanol ester + H,0

hex. acid conversion [-]

homogeneous reaction

run time [min]
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- roctanol{ }

— Why two maxima?
octanol outlet
octanol inlet
hex. acid outlet

hex. acid inlet

conversion [-]
octanol selectivity [-]

01 02 03 04 05 06 07 08
reactor inlet octanol conversion [-]

run time [min]
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equilibrium
limitation

Esterification C
ke.C,q -C.( 11

" ~acid *
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water ]
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Etherification water adsorption
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|'(A ‘Calcohol cat — two sites

S
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C 120 [PPM]

liquid

only stripping

column length
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Reactive stripping can intensify processes
Film flow monoliths are suitable reactor internals

Selectivities can be explained qualitatively from
interplay between kinetics and mass transfer
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. D . - e Co-current versus counter-current — plug flow
Equilibrium limitations - maintaining driving force . Gas-Liquid system (solid catalyst) — hydrotreating
¢ Removal product, shift equilibrium « HDS. isothermal

Increase productivity — avoid competitive adsorption, secondary « Gas-liquid mass transfer
reactions

o L » Conditions:

« Removal inhibiting or deactivating products « 638K, 80 bar, 400 mol/m?, 352 mol H,/s, 432 m?
» Pure hydrogen feed, inlet liquid no hydrogen

» Kinetics
e First order in both reactants

o IRSEEIO silapllne) « With & without inhibition r—
+ Catalytic operation e N S N e
2 2

Two-phase operation (GL, LL)

« Catalytic distillation
ke, Cs

v.Hasselt; Lebens er a/. Chem.Engna.Sci. 54 (1999) 4791-4799

Catalysis ﬂ; Catalysis
Engineering Engineering

(((lq"””"i‘””*””‘r’f—*7*7—71——7——————7‘,7H,,,,,;
(C | | | | 1
o | ' ! '

» Effect mass transfer
* No inhibition
* Only H,S inhibition
* H,S and organics inhibition ka= 510451 ka=1*102 51

= 5*103 ¢
H, — ka=5*103s"1 1 1 : : !
i JOUUTS PUDSUE DT
I g e e SR A LSRRI NS,
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e N0 inhibition

k=106 K, ;= K;= 0
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ka=5*103s1 : : : : :
e mass transfer oeessrebenseiiotoed oot
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* H,S inhibition

k=10 K,,s= 1.09%102 K, = 0

Catalysis Changing order to 0
Engineering Lower conversion

* Inhibition

* Lowers conversion

e Change from apparent 1st to 0t (neg.) order
* Mass transfer improves conversion

» apparent reaction order increases with & a

* Poor mass transfer yields negative order

Catalysis
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k,a=5*10“4s?
Co-current

k,a=5*103%s1
e mass transfer
* H,S, Org-S inhibition

k=10 K,,s= K;= 1.09%102

Catalysis Order 0 to negative
Engineering Low conversions

» Effect mass transfer
* No inhibition
* Only H,S
» Both H,S and reactant

ka= 1*103 s?

Lo
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Counter-current

ka= 1*103s1
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Order negative to 0
Lower conversion

8004 - = - ----

Catalysis

Engineering

Hydrogen availability
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 Inhibition . » Effect mass transfer
» Lowers conversion * No inhibition

» Change apparent order (—from 1st to 0t")
e Mass transfer
* Increases conversion

» Changes apparent order (—from neg. to pos.)
* H,S

* Liquid concentration through maximum

» Leaves reactor in liquid phase
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* No inhibition:
* Low mass transfer: co-current preferred
» High mass transfer: countercurrent preference
» Hydrogen availability
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ka=5*104s?
K, s = 1.09*10-2

Co-current Counter-current

Catalysis

<3
Engineering TU Delft

» Effect mass transfer
* H,S inhibition
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Co-current
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k,a=5*103s?
K, s = 1.09*10-2

Counter-current
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single reactor

Countercurrent only better at high conversions
* No inhibition: Inhibition requires higher mass transfer rates for
» Low mass transfer: co-current preferred advantage

« High mass transfer: countercurrent preference Liquid phase not necessarily free of H,S
B  Catalyst grading not attractive
2 -

» Changeover at higher mass transfer rates
* Higher H,, lower H,S concentration at end
* Only at high conversion

Apparent reaction order: negative to positive

» Decreases with inhibition and poorer H, availability
* Increases with increasing mass transfer

» Countercurrent stronger order decrease
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Any question?
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