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Motivation

Methods based on statistical and quantum mechanics have 
reached a level of sophistication that they can now be used to 
describe elementary processes involved in heterogeneous 
catalysis almost quantitatively. 

We should use these methods to reach long-standing goals of theoretical 
research in heterogeneous catalysis:

• Predict effects of catalyst composition and structure on reaction 
rates and product distribution

• What is the best zeolite structure for a given reaction? 
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Problem

3

the following data should be computed fully based on molecular simulation 
techniques (Quantum mechanics, Molecular dynamics, Monte Carlo)

• reaction mechanism

• rate constants

• multicomponent diffusivities inside the pores

Taking the example of the alkylation of benzene with ethene over
H-ZSM-5,

+ H2C=CH2
H-ZSM-5

and used in a continuum model to calculate the overall activity of a 
catalyst particle 



Modeling approach

Active site Crystal

wanted:
• activation energies

• rate constants

• adsorption isotherms

• diffusivities

Unit cell

• concentration profiles

• overall rates of reaction
methods:
• DFT / MP2

• TST

wanted:

methods:
• Monte Carlo

• Molecular dynamics

wanted:

methods:
• Maxwell-Stefan eqns

combined with IAST

Christensen et al.; JACS 125 (2003) 13370
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Calculation procedure
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Boundary conditions:
• symmetry condition in center of sphere

• constant loadings on exterior surface (adsorption equilibrium) 5

radial coordinate [m]  
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Amount of adsorbed 
C8H10 at the acid 
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molecular simulation



Maxwell-Stefan equations

• Method for prediction of multi-component diffusion based on 
information on pure component diffusion

from MD

differentiation of 
mixture isotherm 
model e.g. IAST
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Adsorption

• pure component isotherms: 
MC simulations

Good agreement between MC mixture simulation and IAST 
for  industrially relevant pressures

MC mixture simulation vs. IAST
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• Validation by selected 
mixture MC simulations

• mixture adsorption isotherms: 
IAST using pure component 
isotherms as input

Continuum model requires mixture adsorption isotherms at 
arbitrary bulk compositions and pressures



• multiple MD simulation campaigns for 
different loadings and temperatures

• usage of MD data to parameterize M-S 
equations: 
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C2H4 MD MD Eq. (1) fitted to pure comp. MD data
C6H6 N/A
C8H10 N/A

<---------------  fitted to binary mixture MD data  ------------->
<---------------  fitted to binary mixture MD data  ------------->

Self-diffusivity of ethene in 
ethene-benzene mixture

Diffusion
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Continuum model requires diffusivities at arbitrary 
compositions of the adsorbed phase
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+
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Details: Hansen et al., J. Phys. Chem. C 112 (2008) 15402

T33 cluster

Reaction
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)( DFT
T33T5a,

MP2
T33T5a,

DFT
T33a,corra, ←← −+= EEEE

s-1rate coefficients at 650 K,

Details: Hansen et al., J. Phys. Chem. C 112 (2008) 15402

Reaction

DFT-barrier, 
T33-cluster

MP2-barrier
T5-cluster, cut out from DFT-converged T33-cluster

1-step
120.5 99.2 110.5

2-step
, kJ/mol

k 1 4.97×100

k -1 9.75×10-4

k 1 1.14×103

k -1 1.12×102

k 2 1.84×103

k -2 6.98×100

1-step

2-step

Ea,corr

10



Rate expression for 1-step scheme
• QM + TST provides rate coefficients for elementary turnovers: 

kf

kb

mol of co-adsorbed C2H4 + C6H6

mol H+ × time

• Rate of reaction: 

Amount of co-adsorbed 
C2H4 + C6H6 at the acid 
sites [mol/kg]

How do we know qE+B,H+ ?

we express qE+B,H+ as function 
of qE, qB, qEB

Amount of adsorbed 
C8H10 at the acid 
sites [mol/kg]
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+++ −= HEBbHBEf qkqkr
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Continuum model requires rates at arbitrary compositions of the 
adsorbed phase

Conventional LH-expression

CBA kkr θθθ 21 −=

• Reactants not equally 
distributed

• Different saturation capacities 
of reactants

Problems



Rate expression for 1-step scheme

Fraction of ethene co-
adsorbed with benzene in 
intersection

Factor to account for 
active site blocking by 
ethylbenzene

• Rate expression has to reflect pore 
architecture of the zeolite

Number of active 
sites per uc
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Tailor made for a given guest-host system
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rsample

• MC simulations of ethene-benzene mixture at 
different loadings inside zeolite

• Sampling amount of co-adsorbed E+B

Rate expression vs. MC simulation

Model and simulation are in good agreement 13
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Re-adjustment
Problem: no quantitative agreement between simulation and experiment

1-step scheme: too low activity; 2-step scheme: too high activity

Extracted Đs of aromatics likely too high: Problem with conventional 
MD and slow diffusing species Solution

Independent adjustment of 
preexponential factor A and 
order of magnitude of Đ:
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Simulation

Experiment [1]
Mesoporous 
H-ZSM-5

Conventional 
H-ZSM-5

Fit A to 

Fit Đ to 

• Data hardly affected by 
transport limitations

• Data strongly affected by 
transport limitations

Ð ≈ 10-13 m2 s-1

A = 3.2×1012 s-1

Results

2.6×1010 s-1

fitted unfitted

10-10 m2 s-1 14



Results

Apparent Arrhenius parameters
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p [105 Pa] E app [kJ mol-1] A app [s
-1]

2.0 58.7 1.25E+04
3.0 64.3 6.95E+04
4.0 68.7 2.46E+05
5.0 72.3 6.63E+05

Function of pressure and composition

PB/PE = 5

15Hansen et al., J. Phys. Chem. C 113 (2009) 235 



Results
How does the co-adsorbed amount of C2H4 + C6H6 depend 
on the partial pressures?
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In absence of diffusion limitation: 1st order in pE; 0.4 order in pB
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Results
How does diffusion limitation influence the macroscopic rate 
orders?

• exponent with respect to pE: 0.87 

• exponent with respect to pB: around 0

Good agreement with experimental observations
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Work in progress

improved estimation of rate coefficients:

- replace cluster calculations by periodic DFT

- Systematically account for BSSE and basis set incompleteness

- Account systematically for van-der-Waals interactions
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Applications

• Test of phenomenological rate laws

• Alkylation of benzene with ethane
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Test of phenomenological rate laws

Common rate laws in heterogeneous catalysis:

Langmuir Hinshelwood (LH): 

Power law (PL): 

Parameter estimation: fitting to rate data from differential reactor

Here: fitting to data from computer experiments 
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Advantage: All kinetic data are known exactly

Discrepancies are due to intrinsic shortcomings of LH 
and PL models
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C2H4

C6H6

C8H10

C6H6

C2H4

Full continuum 
model for catalyst 
particle

• Fixed bed reactor

• Plug flow

• small conversions < 2%
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• 45 data points
• P=1–5 bar
• yB= 0.5–0.9, yE= 0.01–0.49, yEB= 0.01–0.39 

603 K 653 K

Least square results

Agreement of LH better than of PL
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Least square results

Activation energies:

LH:
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kk aexp01

44.2 kJ/mol

PL: 67.3 kJ/mol

Intrinsic Ea: 120.5 kJ/mol Apparent: p [105 Pa] E app [kJ mol-1] A app [s
-1]

2.0 58.7 1.25E+04
3.0 64.3 6.95E+04
4.0 68.7 2.46E+05
5.0 72.3 6.63E+05

Energy parameter in empirical rate laws lacks any physical 
significance
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Extrapolation…

…to higher pressure …to higher temperature

653 K

703 K

Extrapolation quality of LH model much better than of PL

6-10 bar

1-5 bar
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Reactor simulations

653 K
6-10 bar

PB/PE=5/1

Extrapolation to higher 
pressure:

Extrapolation to higher pressure 
and other composition:

653 K
6-10 bar

PB/PE=2/3

25

Significant deviations at higher conversion



C2H6

C6H6

A

C2H6 -> C2H4 + H2C6H6 + C2H4 -> C8H10

C8H10

H2

C6H6
C2H6
C2H4

D

Coupling of alkylation with dehydrogenation of ethane
Background:

• Ethene production is energy intensive

• Ethane is a much cheaper raw material

Bifunctional catalyst with dehydrogenation function

Possible dehydrogenation sites: GaxPty

Additional QM and MD simulations
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QM-calculations
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Kinetics

• dehydrogenation can be described as 5-step mechanism

• rate coefficients are much higher than for alkylation

Simplified description of dehydrogenation:

2421621 HHCHCdeh qqkqkr −−=

effective rate constants

Problem: ratio k1/k-1 has to ensure the correct equilibrium composition:
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Implementation:



Thermodynamics

• Conversion between Ka and Kq
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Equilibrium composition depends on adsorption strengths 
of all species



Results

Exp.: Lukyanov, Vazhnova, J. Catal. 257 (2008) 382  30



Conclusions

• Model for simulation of overall activity of  zeolitic catalyst particle 
is proposed

• All model parameters are determined from theoretical approaches 
describing the elementary processes adsorption, diffusion, 
reaction

• Clear separation between intrinsic kinetics and Adsorption / 
transport

• Apparent rate parameters were shown to be complex functions of 
zeolite structure, particle size, and reaction conditions
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