EUREKIN

Excellence in commercial reaction kinetics Centre of excellence in reaction kinetics in the industrial and academic world

> ISCRE-22 slide show, September 3-5, 2012 Demo version: duration 11 minutes (19 slides)

Origin and ideas of Eurokin

Based on a 1996 industrial survey that revealed a need for improvement in kinetic research

A.N.R. Bos, L. Lefferts, G.B. Marin, M.H.G.M. Steijns, Kinetic research on heterogeneously catalysed processes: A questionnaire on the state-of-the-art in industry, Appl. Catal. A: General 160 (1997) 185-190.

- Gathering of kinetic data, currently very costly and time consuming
- Software for parameter estimation from kinetic data, with an emphasis on user-friendliness

General aims: 1) Implementation of best practise in the area of chemical reaction kinetics in the industrial environment

2) Produce a pre-competitive toolkit for kinetic research

- Sector Faster, cheaper, better reaction rate expressions
- Enabling faster-to-market development and more accurate reactor designs

Eurokin was founded in Summer 1998

The consortium is 100% funded by member companies

2/19

FUR

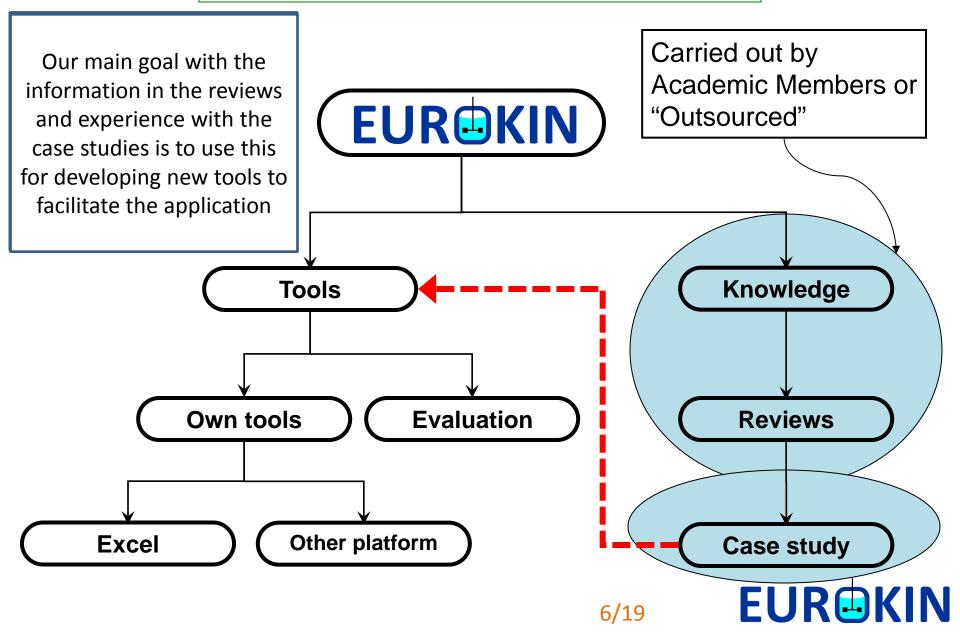
ALBEMARLE[®]

Lhoist

de

Johnson Matthey

Academic participants in projects


Eurokin membership

- Rolling programme without fixed termination date
- Programme is updated each year, and depends on the priorities of the industrial members
- 3 times per year workshop and Main Committee meeting
- Industrial members pay yearly fee (currently € 12,500)
- Academic members provide support and guidance in the development and execution of the programme

5/19

- Confidentiality agreement concerning foreground and background information and knowledge
- All members are allowed to use all tools and reviews

Eurokin 'Ways of Working'

What have we done up to date ?

(1) Experimental set-up

- Reactor selection for reaction kinetics experiments
- Suppliers of reactor set-ups (also for HTE)

Assessment of transport limitations (spreadsheets)

Fixed bed reactor Agitated reactors Slurry reactor Robinson-Mahoney reactor Trickle-bed reactor Fluidized-bed reactor

What have we done up to date ?

(2) Kinetic data analysis

- Comparison of software packages for kinetic parameter estimation
- Application of sequential experimental design for kinetic model discrimination and parameter accuracy
- Perturbation / extrapolation
- Coping with irreducible transport phenomena

What have we done up to date ?

(3) State-of-the art reviews and case studies

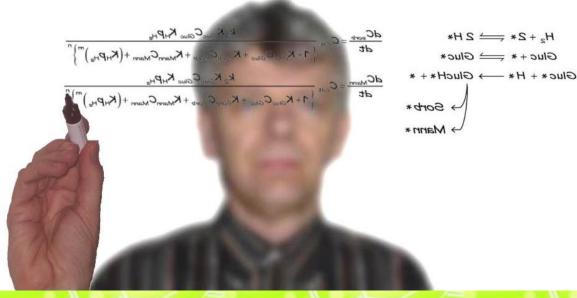
- Non-experimental methods for estimating reaction rate parameters
- Reaction networks and lumping for complex systems
- Analysis techniques for petroleum fractions
- Estimating liquid-phase reaction kinetics based on gas-phase experimental data (non-ideality, solvent effects)
- Effective diffusivity in porous materials (characterization, models)
- Kinetics and models for catalyst decay and catalyst regeneration
- Extraction of kinetics from large datasets (plant and HTE)
- Coupling chemical kinetics with computational fluid dynamics
- Non-steady state methods for estimating reaction rate parameters

9/19

FUR

Current programme

• Category A – Theoretical methods to obtain kinetics


- Assessment of non-experimental methods and software by means of case studies of specific reaction network
- Liquid-phase kinetics
 Hydrocracking kinetics
- Category B Experimental methods and reactors to obtain kinetics
 - Spreadsheets for evaluating absence of transport phenomena
 - Phase (dis)appearance in GLS reactors
 - Alternative GLS reactors: spinning-disc reactor
 - Thermocouple 'error'
 Reactors for fast exothermic reactions
 - Mixing for fast reactions
 Structured catalysts and reactors
 - Methods and approaches for describing the diffusivity in catalyst bodies
 - Reacting particles in fluidized bed reactors
 - Dynamic methods
 Non-thermal reactors
 - FCC heavy feedstocks and catalyst deactivation
 - In-situ spectroscopy
 Best experimental practice

• Category C – Software to obtain kinetics from experimental data

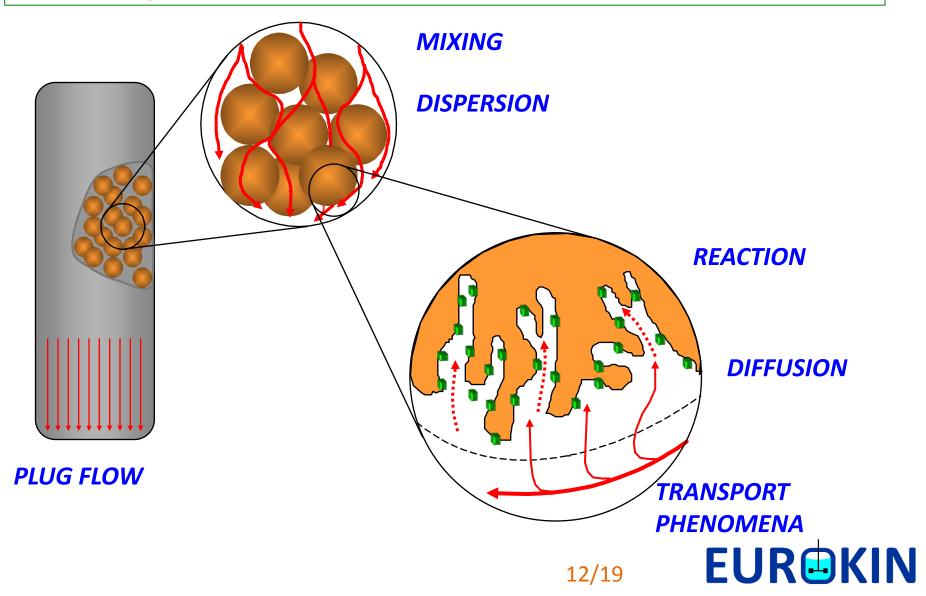
10/19

- Parameter estimation: objective function, data reconciliation
- Category D Implementation of kinetics

(new) Public Eurokin website

• Public Eurokin website:

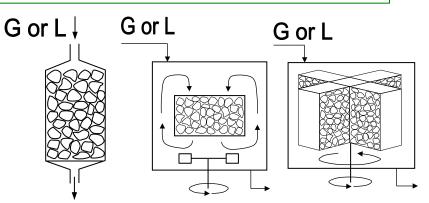
- New public website
- Modern appearance
- Information about the consortium and all members

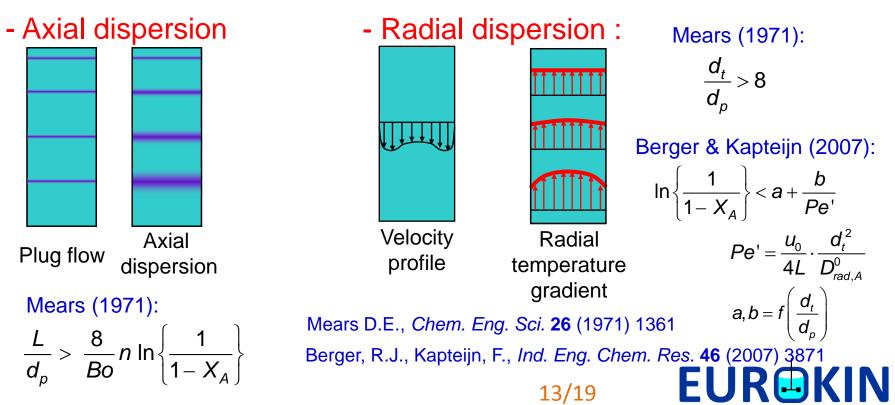

- All non-confidential workshop presentations
- Fixed-bed web tool

11/19

- Search function
- Counters for downloads

(New) Eurokin public website (http:// www.eurokin.org)

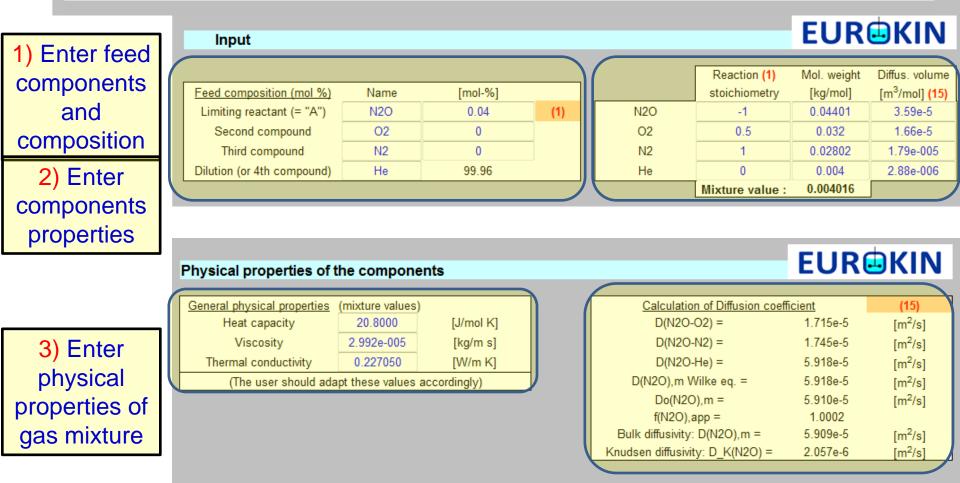

Freeware tool: Spreadsheet for assessment of transport limitations in the fixed-bed reactor



Freeware tool: fixed-bed reactor spreadsheet

Correlations implemented

- Gas-solid and liquid-solid fixed beds
- Needed: experimental conditions, catalyst and fluid properties
- Calculation if *intrinsic* kinetics is measured


Freeware tool: fixed-bed reactor spreadsheet

Spreadsheet screenshots: input data (1)

EUROKIN SPREADSHEET FOR ASSESSMENT OF TRANSPORT LIMITATIONS IN GAS-SOLID FIXED BEDS

EUROKIN

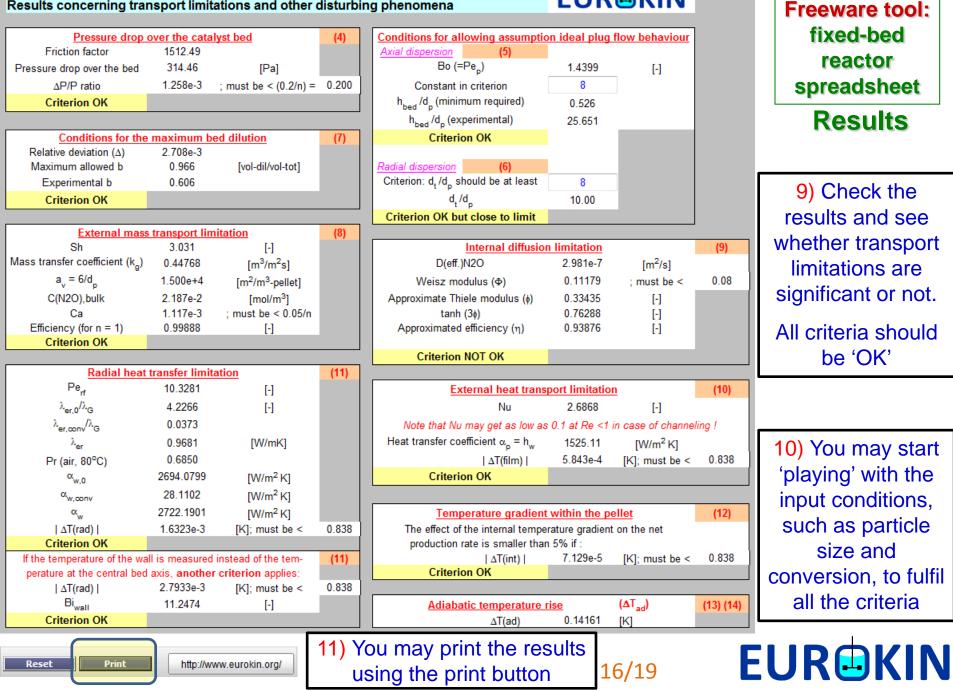
This webtool is a spreadsheet for selecting proper conditions in a gas-solid fixed-bed reactor for intrinsic reaction kinetics. It was developed by the Eurokin consortium (http://www.eurokin.org) and made accessible to the public for free in 2012. It consists of this spreadsheet and a document with background information EUROKIN_fixed-bed_html_guide.pdf.

4) Calculation of the diffusivity

EUR•KIN

Freeware tool: fixed-bed reactor spreadsheet

Spreadsheet screenshots: input data (2)


4) Specify	Reaction conditions:							
	Catalyst temperature	550	[K]	(1)	Calculated values			
reaction	Total pressure	250	[kPa]		Volumetric flow at reaction cond.	2.414e-6	[m ³ /s]	
conditions	Total molar inlet flow	0.000132	[mol/s]		Volumetric flow at STP	1.776e+2	[ml/min]	
		0.000102	[1108.0]		Superficial velocity Particle Reynolds number	0.19213 0.56397	[m/s]	
	Properties of catalyst and dilution				Density mixture	0.21956	[kg/m ³]	
5) Specify	Amount of catalyst	0.05	[g]	N	Molar volume	1.83e-2	[m ³ /mol]	
catalyst +	Amount of bed dilution	0.15	[g]		Pr	0.68251		
-	Catalyst pellet diameter	0.4	[mm]		Sc	2.30627	[-]	
dilution				(2)	Space time [W _{cat} /(mol-A/s)]	9.470e+2	[kg/s mol]	
properties	Bed porosity	0.4	[m ³ /m ³ _{bed}]	(2)	Weight dilution degree	0.75000	[kg _{dil} /(kg _{cat} +kg _{dil})]	
	Cat. internal specific area	122	[m²/g]		Volume dilution degree	0.60591	[m ³ _{dil} /(m ³ _{cat} +m ³ _{dil})]	
	Catalyst pellet porosity	0.6	[m ³ /m ³ _{pellet}]		Bed cross-sectional area	1.257e+1	[mm ²]	
	Catalyst bulk density	984	[kg/m ³ bed]		Bed height	1.026e+1	[mm]	
	Catalyst pellet tortuosity	4	[-]		Real residence time in bed	2.136e-2	[s]	
	Cat. pellet thermal conduct.	0.5	[W/mK]		Total catalyst bed volume	1.289e+2	[mm ³]	
		3200			Catalyst pellet density	1640.00	[kg/m ³]	
	Dilution pellet density		[kg/m ³ _{pellet}]			C 000		
	Dil. pellet thermal conductivity	40	[W/mK]		Average pore radius Catalyst solid density	5.998 4100.00	[nm]	
6) Specify	Reactor dimensions:				Catalyst solid density Catalyst pore volume	0.36585	[kg/m ³] [ml/g]	
reactor	Internal reactor diameter	4	[mm]		Average pellets thermal cond.	1.2448	[W/m K]	
	Diameter thermowell	0						
dimensions	Diameter thermowen	0	[mm]		Observed rate constant	1.000e-6	[mol-A/kg-cat.s.Pa-A ⁿ]	
	Reaction rate				Reaction rate per pellet volume	1.640e-1	[mol-A/m _{pellet} ³ s]	
7) Specify	Observed reaction rate	0.0001	[mol-A/kg-cat.s]	(1)	Conversion of A	0.09035	(3)	
reaction	Reaction order A	1	[-]					
					8) Check calc	culated	values: the	
character-	Apparent activation energy	150	[kJ/mol-A]		· · · · · · · · · · · · · · · · · · ·			
istics and	Reaction enthalpy	81.5	[kJ/mol-A]		conversion can be used to find the			
observed	observed reaction rate						on rate	
rate					15/19	ΓIJ	REKIN	

Results concerning transport limitations and other disturbing phenomena

reactor

be 'OK'

General recommendations for kinetics research (1)

- The experimental reactor should not be a small-scale copy of the industrial reactor
- Search for information on comparable chemical systems
- Determine in advance which kinetic data you really need
- Check for reproducibility by performing replicate experiments
- Start to carefully analyze your data for reaction sequence and influence of components as early as possible (already during the experiments and certainly before starting modeling)
- Use more theoretically based models if extrapolation is required
- Define several kinetic models and model selection criteria

17/19

General recommendations for kinetics research (2)

- Use LHHW type rate expressions for heterogeneously catalyzed reactions (+ elementary surface reactions)
- Reduce correlations between adsorption constants by performing experiments with (co-)feeding intermediates or reaction products
- Decouple k₀ and E_{act}
- Check for significance of the parameters (i.e. confidence range smaller than parameter value) (t-value)

18/19

- Check for adequacy of the model (F-test)
- Apply experimental design for model selection and improvement of parameter accuracy

- Excellence centre in reaction kinetics in the industrial and academic world
- Consortium with currently 9 industrial members aiming at:
 - 1) Development of handy tools applicable in the industrial research
 - 2) Scientific reviews by acknowledged academic centres on industrially relevant subjects somehow related with reaction kinetics today as well as in the future

19/19