Fischer-Tropsch Synthesis revisited **Fischer-Tropsch synthesis** considerations on **Reaction-Diffusion and Selectivity** $CO + 2H_2 \rightarrow$ C_nH_{2n+2} + H₂O ⊿H = -170 kJ/mol CO polymeric growth scheme in a cobalt catalyst particle David Vervloet, Ruud van Ommen, Freek Kapteijn 1-α СН₄ C5-C9 Catalysis Science and Technology 2 (2012) 1221–1233 DOI: 10.1039/c2cy20060k C_4H_{10} 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 chain growth probability α **4**UDeltt **Kinetics** H₂/CO1 Heat & Mass Transport ? Eurokin workshop, Delft 15 Feb 2012 **TU**Delft

Applications and Relevance

Diffusion limitations in Fischer-Tropsch catalyst Diffusion length > ~80 µm

- (Egg-shell) catalysts
- Packed bed reactor
- · Monolith with coated walls
- Micro-packed beds

Goal: Investigate catalyst performance

- Reaction-diffusion model
- Selectivity model
- Performance as $f(T, P, H_2/CO)$
- Model utilization

Yates and Satterfield, Energy & Fuels (1991)

The Fischer-Tropsch process

Basic reaction:

syngas Hydrocarbon
distribution water
$$x \text{ CO} + y \text{ H}_2 \xrightarrow{\text{catalyst}} z (-\text{CH}_2-)_n + x \text{ H}_2\text{O}$$

Kinetics expression: Yates and Satterfield¹

$$R_i = \left| \nu_i \right| rac{
ho_{cat} Fap_{CO} p_{H_2}}{\left(1 + b p_{CO}
ight)^2}$$
 Modern catalyst: $F \approx 3$

• Chain growth mechanism:

Chance for adsorbed chain growth: α Chance for adsorbed chain termination: 1 - αTypically desired for low-*T* FT: α > 0.9

TUDelft

Transport and consumption H₂ - CO

Diffusivity

$$D_{i,\text{eff}} = \frac{\varepsilon_{cat}}{\tau_{cat}} D_{i,\text{bulk}} = \frac{\varepsilon_{cat}}{\tau_{cat}} D_{i,0} \exp\left(\frac{-E_{D,i}}{RT}\right) \qquad \qquad \textcircled{0} 500 \text{ K:} \quad \frac{D_{\text{H2.eff}}}{D_{\text{CO,eff}}} \approx 2.7$$

Consumption ratio of reactants: (α independent of chain length)

$$\frac{R_{\rm H2}}{R_{\rm CO}}=3-\alpha\approx2.1$$

Diffusional transport ratio:

$$\frac{\text{Diffusion}(H_2)}{\text{Diffusion}(CO)} = \left(\frac{D_{H_2}}{D_{CO}}\right) \times \left(\frac{\nabla \text{Concentration}_{H_2}}{\nabla \text{Concentration}_{CO}}\right) \approx \underbrace{2.7 \times 2.1}_{\text{physical}} = 5.7$$

Diffusion and consumption are intrinsically unbalanced

TUDelft

Model Equations

Balancing diffusion with consumption: Back-of-the-envelope

- Degrees of freedom (1):
 - Diffusivities (physical) are fixed
 - Consumption ratio (desired product) is fixed
 - H₂ / CO (bulk) can be varied
- Balance ratios (H₂ / CO): diffusivity $\times \nabla$ concentration = consumption rate

 $2.7 \times \nabla$ concentration = 2.1 ∇ concentration = 0.8

Preserving the syngas ratio inside the particle may be possible at low bulk feed ratios H₂/CO

TUDelft

Reaction-diffusion equations

• Internal:

$$0 = \frac{1}{z^s} \frac{d}{dz} \left(z^s \frac{dy_i}{dz} \right) - \phi_i^2 \psi_i \qquad \phi$$

Thiele modulus

 $\ell_{cat} = V_{cat} / S_{cat}$

Dimensionless reaction rate

Steady state reaction-diffusion

s = 0 (slab), 1 (cylinder), or 2 (sphere) This presentation

- Boundary conditions: ٠
- center: surface:
- External limitations: • surface: (not considered in this presentation)

 $\frac{dy_i}{dz}\Big|_{z=0,1} = Bi_m (1-y_{i,0})$

Results: Profiles

Results: Various Temperatures

Conditions: P = 30 bar

 H_2 / CO = 2.0 (surface) $d_{cat} = 500 \,\mu m$ 3 × Yates and Satterfield

Results:

T/K	φ _{co}	η _{cat}	α _{ave}
480 K	0.12	1.04	0.92
490 K	0.26	1.10	0.84
500 K	0.54	1.27	0.56
510 K	1.08	1.05	0.41

temperature, diffusion and a are intimately coupled

Results: Variable vs. Fixed α

Similar rates, strong deviation in α

TUDelft

Results: Various H₂/CO Surface Ratios

Syngas ratio, diffusion and α are intimately coupled

Results: Back-of-the-envelope check (1)

Results: Back-of-the-envelope check (3)

TUDelft

Results: Back-of-the-envelope check (2)

Results: Back-of-the-envelope check (4)

Preserving the syngas ratio becomes difficult at high φ

TUDelft

Results: Average α

Results: Catalyst effectiveness

TUDelft

Acknowledgment	Assumptions	
This research is supported by the Dutch Technology Foundation STW, which is the applied science division of NWO, and the Technology Program of the Ministry of Economic Affairs, Agriculture and Innovation. Research carried out in the framework of the Green & Sustainable Process Technology programme	 Single particle consideration external (film) transport not included may strengthen diffusional unbalance Chain growth probability model applies Variable probability dependency on <i>T</i> and H₂/CO ratio based on methane production Yates and Satterfield kinetics temperature dependency components identical e.g. methane formation higher <i>Ea</i> Deactivation not considered larger CO amounts 	
Ť UDelft	36 J)elft