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CO + 2H2 CnH2n+2 + H2O

Fischer-Tropsch synthesis 

polymeric growth scheme
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Kinetics
Heat & Mass Transport ?

H = -170 kJ/mol CO

Applications and Relevance
Diffusion limitations in Fischer-Tropsch catalyst
Diffusion length > ~80 μm

• (Egg-shell) catalysts
• Packed bed reactor
• Monolith with coated walls
• Micro-packed beds

Goal: Investigate catalyst performance 
• Reaction-diffusion model
• Selectivity model
• Performance as f(T, P, H2/CO)
• Model utilization

G + L

The Fischer-Tropsch process
• Basic reaction:

• Kinetics expression: Yates and Satterfield1

• Chain growth mechanism:
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Chance for adsorbed chain growth: α
Chance for adsorbed chain termination: 1 – α
Typically desired for low-T FT: α > 0.9

3F »Modern catalyst:

[1] Yates and Satterfield, Energy & Fuels (1991)



Transport and consumption H2 - CO
Diffusivity

Consumption ratio of reactants: 
(α independent of chain length)

Diffusional transport ratio:

Diffusion and consumption are intrinsically unbalanced
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Balancing diffusion with consumption:
Back-of-the-envelope

• Degrees of freedom (1):
– Diffusivities (physical) are fixed
– Consumption ratio (desired product) is fixed
– H2 / CO (bulk) can be varied

• Balance ratios (H2 / CO):

diffusivity concentration consumption rate´ =

2.7 2.1concentration´ =

0.8concentration =

Preserving the syngas ratio inside the particle may be possible 
at low bulk feed ratios H2/CO  
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Model Equations

Reaction-diffusion equations
• Internal: 

• Boundary conditions:

• External limitations:
(not considered in this presentation)
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Steady state reaction-diffusion Thiele modulus Dimensionless reaction rate
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Reaction-diffusion equations
• Internal: 

• Boundary conditions:

• External limitations:
(not considered in this presentation)
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Steady state reaction-diffusion Thiele modulus Dimensionless reaction rate

s = 0 (slab), 1 (cylinder), or 2 (sphere) ℓcat = Vcat / Scat
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This presentation

Internal:

External (Mears’ criterion):

Numerical verification:

Catalyst Isothermicity
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Dimensionless 
activation energy

Internal Prater 
number

Wheeler-Weisz 
modulus

The catalyst is isothermal  

Conditions:
T = 500 K
P = 30 bar
H2 / CO = 2.0 (surface)
dcat = 500 μm
3×Yates and Satterfield
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Chain growth probability (α) 
• Sensitive to T and H2/CO
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• Model (math)

De Deugd, PhD thesis (2004)
De Deugd et al., Catal. Today 79-80 (2003) 495-501
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30 μm cat layer
No diffusion limitations H2/CO = 3
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• Propagation / termination basis
• α independent of chain length
• α = f(T, H2/CO)
• Syngas ratio scales with power β Fit: kα = 0.0567 ± 0.0150

β = 1.76 ± 0.34
∆Eα= 120.4 ± 16.4 (kJ mol-1)

Results



Results: Profiles

Conditions:
T = 500 K
P = 30 bar
H2 / CO = 2.0 (surface)
dcat = 500 μm
3×Yates and Satterfield

Internal diffusion limitations affect α
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Results:
φCO = 0.54
ηcat = 1.27
αave = 0.56
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Results: Variable vs. Fixed α
Conditions:
T = 500 K
P = 30 bar
H2 / CO = 2.0 (surface)
dcat = 500 μm
3×Yates and Satterfield

Similar rates, strong deviation in α
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Results:

Dim. Concentration [-] 

Dim. CO reaction rate [-]

Chain growth prob. [-]

φCO ηcat αave

α= variable
(solid lines)

0.54 1.27 0.56

α= fixed
(dotted lines)

0.54 1.34 0.78

Results: Various Temperatures
Conditions:
P = 30 bar
H2 / CO = 2.0 (surface)
dcat = 500 μm
3×Yates and Satterfield

Results:
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T / K φCO ηcat αave

480 K 0.12 1.04 0.92

490 K 0.26 1.10 0.84
500 K 0.54 1.27 0.56
510 K 1.08 1.05 0.41
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temperature, diffusion and α
are intimately coupled

Results: Various H2/CO Surface Ratios

Conditions:
P = 30 bar
T = 500 K
dcat = 500 μm
3×Yates and Satterfield

Results:

H2/CO φCO ηcat αave

0.5 0.07 0.97 0.98

1.0 0.19 1.00 0.92
1.5 0.34 1.08 0.83
2.0 0.54 1.27 0.56

Syngas ratio, diffusion and 
α are intimately coupled
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Results: Back-of-the-envelope check (1)
Conditions:
T = 500 K
P = 30 bar
H2 / CO = 0.8 (surface)
dcat = 500 μm
3×Yates and Satterfield
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Results:
φCO = 0.14
ηcat = 0.98
αave = 0.94
Average H2/CO = 0.78
(spatial)

Dim. Concentration [-] 

Local syngas ratio [-]

Chain growth prob. [-]

Preserving the syngas ratio inside 
the particle is possible
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Results: Back-of-the-envelope check (2)
Conditions:
T = 500 K
P = 30 bar
H2 / CO = 0.8 (surface)
dcat = 500 μm
10×Yates and Satterfield
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Results:
φCO = 0.45
ηcat = 0.91
αave = 0.95
Average H2/CO = 0.69
(spatial)

Dim. Concentration [-] 

Local syngas ratio [-]

Chain growth prob. [-]Preserving the syngas ratio inside 
the particle is possible
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Results: Back-of-the-envelope check (3)
Conditions:
T = 500 K
P = 30 bar
H2 / CO = 0.8 (surface)
dcat = 1 000 μm
3×Yates and Satterfield
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Results:
φCO = 0.54
ηcat = 0.88
αave = 0.95
Average H2/CO = 0.65
(spatial)

Dim. Concentration [-] 

Local syngas ratio [-]

Chain growth prob. [-]Preserving the syngas ratio inside 
the particle is possible
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Results: Back-of-the-envelope check (4)
Conditions:
T = 500 K
P = 30 bar
H2 / CO = 0.8 (surface)
dcat = 2 000 μm
3×Yates and Satterfield
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Results:
φCO = 2.16
ηcat = 0.60
αave = 0.96
Average H2/CO = 0.28
(spatial)
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Preserving the syngas ratio 
becomes difficult at high φ



Results: Average α
φCO = 0.6

Reaction controlled Diffusion controlled

Desired region

αave < 0.9

αave > 0.9

H2 / CO = 1.0

Conditions:
T = 500 K
P = 30 bar
F = 3×YS

αave < 0.9

αave > 0.9

H2 / CO = 1.2
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@500 K: α < 0.9 at stoichiometric syngas ratios (φCO < 0.6)

αave (-)

Results: Average α
φCO = 0.6

Reaction controlled Diffusion controlled

Desired region

αave < 0.9

αave > 0.9

H2 / CO = 1.0

Conditions:
T = 490 K
P = 30 bar
F = 3×YS

αave < 0.9

αave > 0.9

H2 / CO = 1.6
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@490 K: α < 0.9 at stoichiometric syngas ratios (φCO < 0.6)

T↓

αave (-)

Results: Average α
φCO = 0.6

Reaction controlled Diffusion controlled

Desired region

αave < 0.9

αave > 0.9

H2 / CO = 1.1

Conditions:
T = 480 K
P = 30 bar
F = 3×YS

αave < 0.9

αave > 0.9

H2 / CO = 2.3
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@480 K: α > 0.9 at stoichiometric syngas ratios (φCO < 0.6)

αave (-)

Results: Catalyst effectiveness
Conditions:
T = 490 K
P = 30 bar
F = 3×YS
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Generally η is acceptable at φCO < 1.0

η (-)

φCO = 0.6 (η > 1 from LH kinetics)

Reaction controlled Diffusion controlled



Results: C5+ Space Time Yield

Productivity is largest at high syngas ratios and φCO < 0.6

Conditions:
T = 490 K
P = 30 bar
F = 3×YS STYC5+ (g gcat

-1 h-1)
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Reaction controlled Diffusion controlled

Loss in η

Loss in RCO

Results: Selectivity vs. Productivity
Conditions:
T = 490 K
P = 30 bar
F = 3×YS

STYC5+ (g gcat
-1 h-1)αave (-)
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Desired

Desired

Selectivity and productivity are conflicting
(Selectivity chosen for economical reasons)

Utilization
• Catalyst development
• Operational conditions
• Reactor operation

Catalyst Design: Improve Activity or Selectivity?
dcat = 50 μm dcat = 1.5 mm

Productivity

Normalized
productivity

Depends on 
conditions

Improve activity

P = 30 bar
H2 / CO = 2.0



Operating conditions: T and syngas ratio
Conditions:
P = 30 bar
3×Y&S
dcat = 500 μm

STYC5+ (g gcat
-1 h-1)αave (-)

T (K)
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Interesting conditions: high T (530 K) and low syngas ratio (0.8)
(NB1: olefin/paraffin ratio, coke formation, H2 limitations in reactor)

(NB2: kinetic relation not valid >530 K)

Loss in αave and η

Loss in RCO

Operating conditions: T and syngas ratio
Conditions:
P = 30 bar
3×Y&S
dcat = 1.5 mm

STYC5+ (g gcat
-1 h-1)αave (-)

T (K)
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Also for larger particles: high T (530 K) and low syngas ratio (0.8)
(NB1: olefin/paraffin ratio, coke formation, H2 limitations in reactor)

(NB2: kinetic equation not valid >530 K)

Reactor Design: Conserving α in a PFR 

Determine allowed temperature rise to keep αave > 0.9
(In this example: 480 K  505 K. NB: match with Uov and dtube)

Reactor inlet

Reactor outlet 
(XCO = 0.7)

Isolines for αave = 0.9 at given temperatures 

Conclusions

Fischer-Tropsch Synthesis in a Co-catalyst particle

• Diffusion and consumption of H2 and CO 
– intrinsically unbalanced
– play an important role in conversion and selectivity

• Optimal conditions selectivity and activity conflicting
• Operating conditions: high T and low syngas ratio

– in agreement with back-of-the-envelope analysis
– WGS functionality needed 

• Guides
– Optimal reactor operation: temperature profile
– Catalyst improvement: Focus on activity
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Assumptions

• Single particle consideration
– external (film) transport not included

• may strengthen diffusional unbalance

• Chain growth probability model applies
– Variable probability dependency on T and H2/CO ratio
– based on methane production

• Yates and Satterfield kinetics
– temperature dependency components identical

• e.g. methane formation higher Ea

• Deactivation not considered
– larger CO amounts
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