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Introduction

o

HDN

- * Answering basic questions

- Why ?

- How ?

- What ?
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Research motivation

+ Research aim

- Elementary reactions, to understand the underlying reaction
mechanisms

— Comparison of gas and three phase reactions

— Scale up to pilot/industrial scale data

 Some previous work
— Case study by Bera et.al, on Naphthalene hydrogenation
— Published work on Tetralin hydrogenation by Guevara et.al

- Not a significant amount of work done with respect to HDN



Research Methodology
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Thermodynamic non-ideality in the liquid

phase

* Non ideality in mixtures
O=0 =0 O
- Chemical potential : Independent of standard state used

Hi = Ui standard + RT In a;

— Condition for phase equilibrium

1l
O

v

Ui = ,u% i=1,..,n
v = f! i=1,..,n

— Basis of V-L relationships : Relate fugacity to compositions
and intensive properties (T, P)

f=nTPy)



Thermodynamic non-ideality in the liquid

phase

o=0 090=V=0p.0

oFuid has%s% 5

- Effect of aggregation state
. . . O=OJ %at@ ySB N
— Chemisorbed and non chemisorbed species

— Description of kinetics, independent of aggregation state

— Difference between vapour and liquid phase kinetics is
situated in the chemisorption step

9A—T

A+ T oA-1 Kar =75
AYT

- Methods and correlations (¢;)
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Comparison : Gas and three experiments

Program Gas Phase Three Phase
Reactor type Berty type (CSTR)
Temperature range (K) 573 - 633
Pressure (MPa) 1.5-4.0 6.0 -8.0
H,/pyridine (mol/mol) 80 — 600 10 - 15
Space time (kgcat 0.36 — 1.8
s/mmol)
Solvent/pyridine 40




35, | [ ]+ Species not observed
FHS [ ]+ Observed in liquid
(Nj N phase experiments
| = only
& +H, -3

* Pentylpiperidine observed in the liquid phase experiments only
» observed with 2D GC - MS analysis
e due to the varying operating conditions
* higher bi molecular reactions in the liquid phase
» Highly reactive/unstable intermediates not observed during
analysis
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Three phase experiments

« Aim

— Study effects of various process parameters on reaction
Kinetics

— Difference in the kinetics of the reactions due to change in
aggregation state

— Acquisition of intrinsic kinetic data
« Preliminary Preparations
— VLE calculations for phase equilibrium analysis
— Thermodynamic equilibrium analysis
- Verification of kinetic regime (Eurokin spread sheet)
— Carberry number : MT limitations : G-L, L-S, G-S
- Weisz Modulus : Intraparticle diffusion : Pyridine, H,

— Mears criteria : Temperature gradient : L-S
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Experimental setup & reactor

Experimental setup showing different sections
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* Increased selectivity towards pentane implies higher C—N bond scission
 C-N bond breaking is temperature dependant
* Pentyl piperidine selectivity decreases meaning disproportion is less

kely
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Experimental results (3)
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* H,S has positive effect on the C-N bond scission :
» Higher hydrocarbon yield at higher H,S/P
 Lower intermediate piperidine yield
» Substitution pathway is more pronounced at higher H,S flow rates
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Gas phase modelling

Model assumptions?:

« Sulphided NiMo catalyst, 2 active sites at the edges :
- Coordinatively Unsaturated Sites (CUS, ‘ * )
— Sulphur anion sites (SA, ' S?)

- Dissociative adsorption of H, and H,S, both on CUS and

SA —
- Heterolytically, Ex.:H,+* +S8% — H™* + S>H*
- Homolytically, Ex.:H,+2* —» 2 H*

» Adsorption of hydrocarbon and
nitrogen species on CUS

lRomero, C.M.C., J.W.Thybaut, and G.B. Marin,
Naphthalene hydrogenation over a NiMo/y-Al203 catalyst: Experimental study and kinetic modelling



Reaction mechanism : Gas phase
modelling

Hydrogenation

+ w - + - + =

N H CH H H HE H H it H
N N N N N N N
H H H H H H

- Hydrogenation occurs through successive H additions
- Homolytic adsorption H, , hydrogen additions from CUS or SA
— Heterolytic adsorption H, , proton or hydride addition first

-~ Each hydrogen addition is potentially RDS
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Reaction mechanism : Gas phase
modelling

O +_H_, +_H_, e " Multi-step network :
N Ez e — Protonation piperidine
+SH_l " — Substitution via SH addition
?‘ — Thiol intermediate
Hs™ 7 TN, — SH-group is good leaving
group

o 2 potential RDS
(protonation or ring
opening)
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Reaction mechanism : Gas phase
modelling

C-N bond breaking of pentylamine

+H" . +H
/\\/\\/NHQ —‘/\\/\\\/NHS — T
- NH, i+SH' ﬁr
-H.S

e SH 2

* Analogous as piperidine hydrogenolysis

» Hydrogenolysis of pentylamine occurs instantaneously
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Summary : Gas phase modelling

- Development of gas phase model
-~ Based on experiments in gas phase
-~ Model discrimination performed between 48 rivals

— Based on physical and statistical significance, Model corresponding
to RDS : 3" Hydrogen addition and 2"d hydrogenolysis step

1 PC5H10NH>
KEqui Psz

Rp_pp = kp +Kp_pr2 Kuz Kp C*Z\/ o u (PHZPCSHE,N -

_ 2
Rpp_pa = kpp Kpp_ppu Kpp U Peop onm Cs

6 =1+ Kp Pecyn + KppPeone + Knwg Pun,

U= Ky,Py, + Ky,sPu,s
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Extension to liquid phase reactions

* Takl N g | n t (@) ! Tpopp = kp+Kp_puz Kz Kp C.2\[6 1t (szfC5H5N - K;ui fCS;:OZNH )
consideration the ) )
. . Tpppa = kpp Kpp—ppu Kpp U fesiyonm Cs
non ideality :

f‘

- Modification for site 8 = 1+ Kpfegugn + KepSegmionn + K fun,

+Ksolventfsolvent + KPentylPPfPentylPP

balances ) :

. ¢ = Ku,s fa,s + Ku, fu,

 Accounting for additional response, pentyl piperidine
« Two possible reaction networks
1. 2 Piperidine — 1-Pentylpiperidine
2. Piperidine + Pentylamine — 1-Pentylpiperidine
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Liquid phase modelling

+H, +H,
O (1) @" /\/\/NHz @‘ PN

1) Gas phase kinetics

2) Gas phase kinetics
3) Relative pentylamine reaction rate < : R

4) Hydrogenolysis of 1-pentylpiperidine

Pentyl amlne hydrOgenOlySIS Tpa—cs = kPA KPA—PAH KPA 'quSHllNHZ C* 2
Disproportion of PP and PA
prop TpA+PP—>PentylPP = kparpp Kpp Kpa g f C5H10NHf CsHi1NH, C. 2

Conversion of PPP to PP + Pentane
TpentylPP—»PP+C5

— 2
- kPentylPP KPentylPP—PentylPPH KPentylPP u fPentylPP C*



Liquid phase modelling : Results

Parameter

98
-AH 376 +30.9
-AS 105
-AH 82.4+29.1

368.6 + 115.9

Units -AS [J/mol-K], -AH [kJ/mol], k* [mol/hr-kgcat], Ea [kJ/mol]
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Liquid phase modelling : Results
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Conclusions

» Proof of methodology with a case study on
HDN

« Successful extension of gas phase kinetics to
liguid phase reactions

- Liquid phase to gas phase shown earlier

* Arobust model that performed well in three
phase and gas phase conditions

» First steps towards the extension to simulation
to pilot plant data
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Intrinsic kinetic regime verification

MT — Interface Dimensionless Limits Reference
Quantity

Liquid —solid Carberry number for Ca<0.05/n Kapteijn et.al., 1993
hydrogen and pyridine

Intraparticle diffusion | Weisz Modulus for ®<0.08 if n>0.5 Weiss-Prater, 1954

(catalyst side) hydrogen and pyridine

AT at theL-S AT s <0.63K Mears, 1971
interface AT, <0.63K
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