Eurokin, 20th Anniversary Symposium, October 16-17, 2018, Vaalsbroek

First Principles Multiscale Modelling to design Pt-based bimetallic catalysts for (de)hydrogenation reactions

Marie-Françoise Reyniers, Maarten K. Sabbe and Guy B. Marin

Laboratory for Chemical Technology

Metal catalyzed processes

Find best trade-offs by optimizing:

- catalyst composition
- reaction conditions:
 - pressure

PURCHASE COST

identification of Pareto • optimal solutions

Metal catalyst design: approach

reactivity & selectivity

statistical thermodynamics

> guidlines for optimal catalyst properties & reaction conditions

Use d-band property as catalyst descriptor

center of occupied d-band

	N°	Descriptor	Symbol	Units
	1	d-band center of the whole d-band relative to the Fermi level	$\varepsilon_d - E_{Fermi}$	[eV]
	2	d-band center of the filled d-band relative to the Fermi level	$[\varepsilon_d - E_{Fermi}] _{filled}$	[eV]
	3	Density Of States at the Fermi level of the total DOS	DOS_{Fermi}	[-]
	4	Density Of States at the Fermi level of the d-band DOS	$[DOS_{Fermi}] _{d-band}$	[-]
	5	Width of the d-band at quarter height	$W_{d,quarter}$	[eV]
	6	Width of the d-band at half height	W _{d,half}	[eV]
	7	Carbon adsorption energy on hcp-M site	$\Delta E_{ads,C}$	[kJ mol ⁻¹]
	8	Interaction energy between the alloy and adsorbed carbon	$\Delta E_{interaction,C}$	[kJ mol ⁻¹]
AL T	9	Antisegregation energy	$\Delta E_{antisegr.}$	[eV]

Catalyst descriptor: principle

GHENT

ε_d - *E*_f

center occupied *d*-band

7

- most stable alloy
- most stable benzene adsorption site
- •E_a first H-addition

Challenges FP-modeling catalytic reactions

statistical thermodynamics

take home

Typical challenges: 1.the "active site"

•The "active site" as defined in *IUPAC Gold Book* "The term is often applied to those sites for adsorption which are the effective sites for a particular heterogeneous catalytic reaction."

•The "active site" as frequently used in kinetic modeling

- •a single type of site
- •uniformly distributed over the surface represented by

•The "active site" as required for first principles calculations • a precisely formulated, atom-defined entity:

- - well-defined surface structure
 - well-defined site geometry (xyz coordinates)
 - multiple catalyst-adsorbate bonding patterns
 - precise amounts of dopants, additives, adatoms
 - particular edge and support effects

Molina and Hammer. Phys. Rev. Lett., 2003, 90:206102.

GHENT

2nd approximation

(111) surface

'skin' or 'monolayer' models

'surface sandwich' models

Typical challenges: 2. computational method

Jacob's ladder illustrates DFT functional hierarchy

GHENT

- PBE is the common workhorse for heterogeneous catalysis no van der Waals interactions generic uncertainty of 20-30 kJ/mol through error cancellation

- 'semi-empirical' DFT- D methods • fast: negligible computational cost • parameterized \Rightarrow manifold of
- methods
- performs well for molecular and band gap systems • problematic for interaction with
- metal surfaces

RPA is the 'best' tool for

heterogeneous catalysis

- but computationally out of reach

Typical challenges: 3.coverage dependence

Experimental data shows that adsorption enthalpies are strongly coverage dependent

Pt(111) single crystal, 300 K

 \mathcal{O}

300 K, Pt/SiO₂ (low and high dispersion), Pt powder, Pt(111) by nuclear and recoil scattering

Case: benzene hydrogenation on Pt(111)

GHENT

Kinetics at low coverage: ortho path dominant

benzene adsorbed at hollow adsorption site: more reactive than bridge (based on $\Delta^{\ddagger}E_{el}$)

GHENT

minimum energy path (periodic Pt(111)) PW91 functional

DP based on μ -kinetic simulation

ortho path: Bera T, et al.I&EC research, 50,12933 (2011)

DP in agreement with path obtained by regression to exptl data

electronic reaction barriers BP86/DZ on Pt₂₂ cluster of Pt(111), Saeys et al, J. Phys. Chem. B,

PW91, low coverage: too low TOF's

Range R_{CHA} (mol/s) 4 10 ⁻⁶ - 5 10 ⁻⁵ 7 10 ⁻¹³ - 6 10 ⁻¹¹ (n - 20 otm, n = 0.6 otm) 0.45 0.60 0.60 1.02	mag
\sim (p = 20 otm pP = 0.6 otm) 0.45 0.60 0.60 1.02	 incor dependent
IIII = 100 and pb = 0.0 and 0.45 - 0.09 = 0.09 - 1.02 = 0.09 = 0.09 - 1.02 = 0.09 = 0.09 - 1.02 = 0.09	•partia
GHENT $n_{\rm B} (p_{\rm H2} = 3 \text{ atm})$ -0.040.32 0.94 - 1.00	benz

Sabbe et al., JCat, 330(2015):406

 \bigcirc

•rates 6-7 orders of nitude too low rrect temperature endence al reaction orders too and wrong sign for zene

Kinetics at $\theta H = 0.44$: ortho path dominant

optPBE vdw-DF functional

vdw-DF, θ H = 0.44: good agreement

Sabbe et al., JCat, 330(2015):406

 \bigcirc

GHENT

Temperature dependence of conversior

Can this be further improved?

Temperature dependence of conversion

underestimation of rate at low T

already evaluated for benzene hydrogenation on Pd(111)

GHENT

conditions corresponding to H coverages $\theta_{\rm H} > 0.44$?

conditions corresponding to H coverages $\theta_{\rm H} < 0.44$?

is a dynamic, explicit coverage dependence as function of the conditions required?

Dynamic coverage-dependent kinetics on Pd(111)

Dynamic coverage-dependent kinetics on Pd(111)

Chou & Vannice J.Cat., 107 (1987):129-139 Vannice & Neikam J.Cat., 23 (1971) 401-405 Moss et al., J.Cat., 58 (1979) 206-219

^a Chou & Vannice J.Cat., 107 (1987):129-139.

 \bigcirc

GHENT

UNIVERSITY

·· 10-3 11	
x 10°- 1.1	0.2
-0.50.2	-0.02
~1	1.2
	-0.50.2 ~1

Total coverages in range 0.5 - 1

Benzene hydrogenation: take home

•critical selection of catalyst model, computational method and effects to be included requires benchmarking/feedback from experiment

selection catalyst model & computational method

surface science & catalytic data in broad range of experimental conditions

 accounting for explicit coverage dependence brings quantitative agreement at industrially relevant reactions conditions within reach

 $= \overline{R_{i*}}$

Case: propane dehydrogenation on Pt/Ga

 \bigcirc

Siddiqi G., Sun P.P., Galvita V., Bell A.T., Journal of Catalysis, 274 (2010). Sun P.P., Siddiqi G., Galvita V., Bell A.T., Journal of Catalysis, 274 (2010). Wang T., Jiang F., Liu G., Zeng L., Zhao Z.J., Gong J., AIChE Journal, 62 (2016)

μ-kinetics: rate analysis on Pt(111)

GHENT

• r_1 (propane adsorption) ~

C-C scission on Pt3Ga vs Pt

High barrier for C-C scission of propyne on Pt₃Ga(111)

 \rightarrow no formation of ethylidyne and methylidyne

 \rightarrow neglegible formation of side products coke, CH₄, C₂H₆ and C₂H₄

— Pt(111) - Pt₃Ga(111)

Coke formation on step sites?

- Pt(211) surface \rightarrow include step sites
- Energetics at relevant reaction step for coke formation:

Pt(111): $\Delta E_{elec} = -64 \text{ kJ/mol}$, $E_{a,elec} = 113 \text{ kJ/mol}$ Pt(211): $\Delta E_{elec} = -53 \text{ kJ/mol}, E_{a,elec} = 96 \text{ kJ/mol}$

Selective blocking of defect sites by Ga atoms:

GHENT UNIVERSITY

Ga prefers to sit in low-coordinated

sites such as edges, kinks and steps:

Ga on surface step \rightarrow Ga in (111) surface plane 22 kJ/mol

X Coke formation via atomic carbon or on step sites less likely for Pt₃Ga

Pt3M bimetallics

GHENT

DFT data for all important steps on Pt₃M(111)

•r₁(propane adsorption) ~ **ACTIVITY** •r₂₆(C-C scission) ~ **SELECTIVITY**

Identification of catalyst descriptor: d-block

•correlation & regression analysis of DFT data on all important reaction steps •d-block alloys: a single descriptor can be used for all reactions; $\Delta E_{ads,C}$ works best

 $\Delta \boldsymbol{E}_{\boldsymbol{r},\boldsymbol{i}} / \boldsymbol{E}_{\boldsymbol{a},\boldsymbol{i}} = \alpha_{i} + \beta_{i} \cdot \Delta \boldsymbol{E}_{\boldsymbol{a}\boldsymbol{d}\boldsymbol{s},\boldsymbol{C}}$

example: $\Delta E_{ads, reaction 5} = f(\Delta E_{ads,C})$

μ-kinetic mapping: d-block

 \bigcirc

GHENT

UNIVERSITY

- strong carbon adsorption
 - \Rightarrow high activity
- weak carbon adsorption
 - \Rightarrow high selectivity
 - \Rightarrow good anti-coking ability

Multi-objective optimization: d-block

optimal trade-offs between catalytic activity, selectivity and anticoking ability = f(descriptor)

$$(T = 600 \circ C, p = 1 \text{ atm}, WHSV = 882 \text{ h}^{-1})$$

Multi-objective optimization: d-block

-catalyst composition & price

Identification of catalyst descriptors: p-block

•correlation & regression analysis of DFT data on all important reaction steps •p-block alloys: two descriptors needed; DOS_{Fermi} and d-band center

$$\Delta E_{r,i}/E_{a,i} = \chi_i + \begin{cases} \zeta_i \cdot DOS_{Fermi} \\ \xi_i \cdot (\varepsilon_d - E_{Fermi}) \end{cases}$$

μ-kinetic mapping: p-block

GHENT

Multi-objective optimization: p-block

-catalyst composition & price

GHENT

UNIVERSITY

Multi-objective optimization: p-block

-simultaneous optimization of p and T for Pt₃Ga

p < 3 atm

•at higher single pass conversion

p > 3 atm

•at low single pass conversion

Propane dehydrogenation: take home

Design of bimetallic catalysts can be speeded up by combining:

- •first principles based activity-catalyst descriptor relations
- •µ-kinetic modelling
- multi-objective optimization

- The approach allows defining optimal trade-offs between composition,
- reaction conditions and catalyst cost allowing to reach predefined
- ranges of activity, selectivity and coke formation

Thank you

approach

challenges

case benzene

case propane

