Mastering the interplay between homogeneously and

heterogeneously catalyzed reactions:

kinetic modeling and scale-up of glucose aminolysis Jeroen Poissonnier and Joris W. Thybaut

EUROKIN WORKSHOP, FEBRUARY 26, 2020, HULL UK

Motivation

European Research

aminolysis

AMINO

LYSIS

Mastering the interplay between homogeneous and heterogeneously catalyzed reactions: kinetic modeling and scale-up of glucose aminolysis

European Research Council

project overview

cellulose pulp

Cargill

experimental assessment

overview

experimental assessment

- batch reactor experiments
- fed-batch reactor experiments

kinetic model construction industrial reactor simulation conclusions

European Research Council

an ch

batch reactor experiments: operating procedure

<u>start-up</u>

- load (dissolved) glucose and catalyst and close reactor
- 2. flush the reactor
- 3. perform pressure test
- 4. load DMA
- 5. load $H_2(p^0)$
- 6. start heating
- 7. maintain pressure with He(p_{tot})

<u>shutdown</u>

- 8. cool down the reactor
- 9. vent and flush the reactor
- 10. remove reactor contents and clean

property	symbol	range	units
initial pressure	p ⁰	4.5 – 6.4	MPa
total pressure	p _{tot}	4.0 – 7.5	MPa
glucose feed	n _{glucose} ⁰	0.3 – 0.5	mol
DMA to glucose ratio	n _{DMA} /n _{glucose} 0	9.0 - 15.0	mol mol
catalyst mass	W _{cat}	3.0 – 4.5	g _{cat}

ch

reaction profile

effect of H₂ and total pressure

conclusions, challenges and opportunities

experimental assessment of glucose aminolysis at temperatures below 400 K

- **DMAE** formed first, **TMEDA** main product
- higher DMA to glucose ratio beneficial, especially for TMEDA
- higher total pressure and, especially, higher initial amount of hydrogen beneficial

trends can be observed but not modelled because

- operating conditions are not sufficiently well specified
- reaction and main product loss during heating
- → fed-batch experimentation
- feed glucose when desired temperature is reached
 - \rightarrow temperature specified
 - \rightarrow properly asses the effect of the temperature
 - \rightarrow avoid losses during heating phase
- maintain pressure with H_2 instead of He

fed-batch reactor

batch reactor

fed-batch reactor

advantages of fed-batch reactor operation:

- - operating conditions are well specified (T, p)
 - no product loss during heating phase \rightarrow higher yields
- possibility to adapt the feed rate
 - opportunity slow down or speed up reaction on purpose

disadvantages of fed-batch reactor operation?

very challenging to assess conversion in case of fast reactions at controlled feeding rates

controlled addition of key reactant when other reaction conditions are reached

fed-batch reactor experimentation

(a) reference: T = 398 K, p_{tot} = 7.5 M

higher desired product yields in fed-batch operation compared to batch operation: Y_{DMAF} : 5% \rightarrow 14%, Y_{TMFDA} : 36% \rightarrow 54% $(Y_{DMF}: 10\% \rightarrow 1-4\%)$ lower temperatures: slightly more DMAE, less TMEDA, more N,N-dimethylglucamine lower total pressure: slightly less TMEDA, not very pronounced higher W_{cat} : less TMEDA, much more N,N-dimethylglucamine (Y = 28% compared to 10% in (a)) higher $n_{DMA}/n_{alucose}^{0}$: more TMEDA \leftarrow highest amount of DMA required!

(b) T = 383 K (c) $p_{tot} = 6.0 \text{ MPa}$ (d) $W_{cat} = 7.4 \text{ g},$ $n_{DMA}/n_{qlucose}^{0} = 19$ (e) $n_{DMA}/n_{qlucose}^{0} = 16$

1Pa,
$$W_{cat} = 3.6 \text{ g}$$
, $n_{DMA}/n_{glucose}^{0} = 12$

experimental assessment: conclusions

batch experimentation

- aminolysis occurs at lower temperatures than expected +
- **DMAE** formed first, **TMEDA** main product +
- higher DMA to glucose ratio beneficial, especially for TMEDA +
- higher total pressure and, especially, higher initial amount of hydrogen beneficial +
- observed trends can not be modelled

fed-batch experimentation

- proper assessment of temperature effect +
- operating conditions much better specified +
- higher **DMAE** and **TMEDA** yields, less degradation ++

overview

experimental assessment kinetic model construction

- reaction network 3 types of catalysis
- model equations
- kinetic parameters and interpretation
- model performance

industrial reactor simulation conclusions

European Research Council

reaction network

amination step

- iminium ion formation 2.
- 3. enamine rearrangement
- retro-aldol 4.

1.

6.

- 5. enamine hydrogenation
 - keto-enol tautomerism
- 7. degradation °

homogeneous catalysis: heterogeneous catalysis:

base

metal

acid

model equations

fed batch reactor

rate equations

$$r_{1} = [k_{1}a_{DMA}^{2}a_{glucose} - k_{-1}a_{DMA}a_{hemi,C_{6}}]\epsilon$$

$$r_{2} = [k_{2}\theta_{\diamond,hemiC_{6}} - k_{-2}\theta_{\diamond,imC_{6}^{+}}a_{H_{2}0}]\frac{W_{cat}}{V_{r}}$$

$$r_{3} = [k_{3}\theta_{\diamond,imC_{6}^{+}} - k_{-3}\theta_{\diamond,enamC_{6}}]\frac{W_{cat}}{V_{r}}$$

$$r_{4} = k_{4}\theta_{\diamond,imC_{6}^{+}}\frac{W_{cat}}{V_{r}}$$

$$r_{5} = k_{5}\theta_{\diamond,enamC_{6}}\theta_{\star,H}^{2}\frac{W_{cat}}{V_{r}}$$

$$r_{6} = [k_{6}a_{enamC_{2}}a_{DMA} - k_{-6}a_{C_{4}H_{9}N0}a_{DMA}]\epsilon$$

$$r_{7} = k_{7}a_{glucose}\epsilon$$

$$k_{i} = k_{T_{ave,i}}exp\left(-\frac{E_{a,i}}{R}\left(\frac{1}{T} - \frac{1}{T_{ave}}\right)\right)$$

$$R_{j} = f(\Gamma_{j})$$

s))

kinetic parameters

	Estimated ave	rage rate coeff	ficient	Estimated a	activatior J mol ⁻¹)	energy
k _{Tave,1}	6.3 10 ⁻¹⁰	± 0.5 10 ⁻¹⁰	m ⁶ _L mol ⁻² s ⁻¹	E _{a,1}	78.1	± 7.2
k _{Tave,2}	2.1 10 ⁴	± 0.6 10 ⁴	mol kg _{cat} -1 s ⁻¹	E _{a,2}	49.9	± 4.9
k _{Tave,3}	7.0 10 ⁻²	± 1.3 10 ⁻²	mol kg _{cat} ⁻¹ s ⁻¹	E _{a,3}	47.5	± 7.9
k _{Tave,4}	3.9 10 ⁻¹	± 0.7 10 ⁻¹	mol kg _{cat} ⁻¹ s ⁻¹	E _{a,4}	59.9	± 9.9
k _{Tave,5}	5.0 10 ¹	± 0.7 10 ¹	mol kg _{cat} ⁻¹ s ⁻¹	E _{a,5}	8.8	± 2.5
k _{Tave,6}	8.9 10 ⁻⁴	± 1.2 10 ⁻⁴	m ³ _L mol ⁻¹ s ⁻¹	E _{a,6}	1.6	± 0.3
k _{Tave,7}	2.8 10 ⁻³	± 0.2 10 ⁻³	S ⁻¹	E _{a,7}	141.7	± 13.0
Estimate	d average adso (m	rption equilibr ³ L mol ⁻¹)	ium coefficient	Estimat enthal	ed adsorp by (kJ mo	otion ol ⁻¹)
K _{Tave,C6}	5.7 10	D ⁻⁵ ± 1.0) 10 ⁻⁵	$-\Delta H_{ads,C6}$	-30.3	± 9.1
K _{Tave,C4}	6.7 1	0 ⁻² ± 0.	6 10 ⁻²	$-\Delta H_{ads,C4}$	-13.7	± 1.9
K _{Tave,C2}	7.0 1	0^{-3} ± 0.	3 10 ⁻³	$-\Delta H_{ads,C2}$	-26.0	± 4.6
K _{Tave,H2}	1.1	± 0.	3	$-\Delta H_{ads,H2}$	-2.9	± 0.3

all parameters significant \rightarrow 0 not included in any confidence interval

 \rightarrow F = 160, F_{tab} = 2.79

all parameters uncorrelated \rightarrow highest binary correlation coefficient 0.8

interpretation of the kinetic model

Estimated average rate coefficient			Estimated activation energy (kJ mol ⁻¹)			
k _{Tave,1}	6.3 10 ⁻¹⁰	± 0.5 10 ⁻¹⁰	m ⁶ _L mol ⁻² s ⁻¹	E _{a,1}	78.1	± 7.2
k _{Tave,2}	2.1 10 ⁴	± 0.6 10 ⁴	mol kg _{cat} ⁻¹ s ⁻¹	E _{a.2}	49.9	± 4.9
k _{Tave,3}	7.0 10 ⁻²	± 1.3 10 ⁻²	mol kg _{cat} ⁻¹ s ⁻¹	E _{a,3}	47.5	± 7.9
k _{Tave,4}	3.9 10 ⁻¹	± 0.7 10 ⁻¹	mol kg _{cat} -1 s -1	E _{a,4}	59.9	± 9.9
k _{Tave,5}	5.0 10 ¹	± 0.7 10 ¹	mol kg _{cat} ⁻¹ s ⁻¹	E _{a,5}	8.8	± 2.5
k _{Tave,6}	8.9 10 ⁻⁴	± 1.2 10 ⁻⁴	m ³ _L mol ⁻¹ s ⁻¹	E _{a,6}	1.6	± 0.3
k _{Tave,7}	2.8 10 ⁻³	± 0.2 10 ⁻³	s ⁻¹	E _{a,7}	141.7	± 13.0
Estimated average adsorption equilibrium coefficient (m ³ _L mol ⁻¹)			Estimate enthalp	ed adsorp by (kJ mo	tion ol ⁻¹)	
K _{Tave,C6}	5.7 10) ⁻⁵ ± 1.0) 10 ⁻⁵	-∆H _{ads,C6}	-30.3	± 9.1
K _{Tave,C4}	6.7 10) ⁻² ± 0.0	6 10 ⁻²	-∆H _{ads,C4}	-13.7	± 1.9
K _{Tave,C2}	7.0 10	-3 ± 0.3	3 10 ⁻³	$-\Delta H_{ads,C2}$	-26.0	± 4.6
K _{Tave,H2}	1.1	± 0.	3	$-\Delta H_{ads,H2}$	-2.9	± 0.3

higher temperatures required to favor retro-aldol cleavage X $E_{a,4}$ lower than expected (± 110 kJ mol⁻¹), after prior amination no selectivity tuning between **DMAE** to **TMEDA** by adapting temperature very good temperature control required to avoid degradation

model simulations

lower pressure (p = 6.0 Mpa)

 \rightarrow lower TMEDA yield

 \rightarrow more pronounced degradation

lower feed rate ($t_0 = 3900 \text{ s}$)

 \rightarrow lower TMEDA to DMAE ratio

 \rightarrow lower feed rate equivalent to higher W_{cat}

kinetic model: conclusions

physically relevant, statistically and globally significant kinetic model

- accurate simulation of experimental data
- mathematical confirmation that retro-aldol occurs at lower temperatures than expected X
- too high temperatures lead to excessive degradation
- tuning the selectivity between DMAE and TMEDA is not possible by changing the temperature

overview

experimental assessment kinetic model construction industrial reactor simulation

- jet loop reactor
- trickle bed reactor conclusions

an ch

two distinct reactor models

why assess two completely different reactor models? **TMEDA** always main product, but what if **DMAE** is desired? kinetic model: no tuning possible by adapting the temperature heterogeneously catalyzed vs homogeneous key reaction steps

Gas

jet loop reactor

low catalyst-to-liquid ratio reactor reactor vessel + tubing continuous recycle of liquid phase heat exchanger built in the loop: ensure temperature control

- •
- •
- overall batch operation •
- jet injector: efficient gas-liquid mixing •
- catalyst flows along with liquid phase

\rightarrow goal: maximize TMEDA yield

Europea

glucose aminolysis product yields in the jet loop reactor

operating conditions

W_{cat}	= 35 kg _{cat}
n _{DMA} /n _{glucose}	= 40 mol mol ⁻¹
m _{glucose}	= 153 kg
Τ ₀	= 390 K
p	= 7.5 MPa

- TMEDA main product with yields comparable to the lab scale batch
- good temperature control is ensured by the heat exchanger

an ch

trickle bed reactor

high catalyst-to-liquid ratio reactor

- catalyst located in a fixed bed in the reactor
- low flow rates of gas and liquid 'trickle' down the reactor
- interphase mass transfer main issue
- ightarrow goal: optimize DMAE yield

\rightarrow challenges:

- control the temperature
- optimize gas-liquid transfer to enhance DMAE yield might be very tricky

Liquid

Gas

<u>Liqui</u>d

Gas

an ch

glucose aminolysis product yields in the trickle bed reactor

operating conditions

 $p_{tot} = 7.5 \text{ MPa}$

Face reality as it is, not as it was or as you wish it to be. Jack Welch

Furonear Council

overview

experimental assessment kinetic model construction industrial reactor simulation conclusions

conclusions

experimental assessment glucose reductive aminolysis

- 3 types of catalysis
- two main products: DMAE and TMEDA

significant, statistically and physically relevant kinetic model

• a prior amination reduces the activation energy for retro-aldol cleavage

industrial reactor simulation

- jet loop reactor (low catalyst-to-liquid): TMEDA main product
 → tuning between DMAE and TMEDA main challenge
- trickle bed reactor (high catalyst-to-liquid): TMEDA main product
 → temperature control and optimization of gas-liquid mass transfer main challenges

Acknowledgments

this work was supported by:

the 'Long Term Structural Methusalem Funding by the Flemish Government'.

 the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement n° 615456.

• Flanders Innovation & Entrepeneurship VLAIO(IWT), via the intermediary of FISCH/CATALISTI contract 145020 – Carboleum

LABORATORY FOR CHEMICAL TECHNOLOGY

Technologiepark 125, 9052 Ghent, Belgium

- Е info.lct@ugent.be
- Т 003293311757

https://www.lct.ugent.be

CONTACT DETAILS jepoisso.Poissonnier@ugent.be

European Research Council